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Introduction

To predict future health condition and remaining useful lives (RULS) in real-time

Model-Based Prognostics Data-Driven Prognostics

Loading | |
Signals

Response | |
Signals

Simulation Estimation Offline Processf| | Online Process
) ) ) )
Identify Update Extract Extract
Model Parameters Offline HI Online HI

. 7 N . 7 N
_Slmulat_e Update & Build Health Project or
with Loading Project HI Knowledge Interpolate

— — ) — ~—

Training | |
Signals

Testing | |
Signals

» Pros: Assess RUL in early stages = Pros: Don’t require assumptions about model
Require less failure data Applicable to complex systems

= Cons: Require physics model = Cons: Require large amount of data
Applicable for component level Require heavy computational load

= Examples: PoF"-based models = Examples: Interpolation-based approach

Bayesian updating approaches Extrapolation-based approach

Kalman/Particle Filter Machine learning-based approach
*Physics-of-Failure
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Introduction

Remaining Useful Life Probability Density Function

 Health prognostics function predicts the time remaining before the fault progresses to an
unacceptable level, in other words, the remaining useful life (RUL)

« Depending on how uncertainty is handled in the prediction process, machine health can
be regarded as probability distribution, degradation can be regarded as evolution of
distribution

>

A priori failure PDF

Posterior failure PDFs

Probability Density

e AN \h‘» Failure threshold
Outliers .,-é-’*’ ‘ Expected RUL " RU.L'cnnﬁdence limits
Current time Tune
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Remaining Useful Life Probability Density Function

 Health prognostics function predicts the time remaining before the fault progresses to an
unacceptable level, in other words, the remaining useful life (RUL)

« Depending on how uncertainty is handled in the prediction process, machine health can
be regarded as probability distribution, degradation can be regarded as evolution of

distribution

, ™ Anomaly Index WM Health Index

>< A
(<5}
o
c
>
o | Safe / I
c
< Failure I
Threshold | 2o Prediction
Index at t; Index at t, pZ--""" Index at t3
= t t I t >
t; ta Current ts Time (t)

time

2019/1/4 Seoul National University



2019/1/4

Model-Based Prognostics

PoF-based models

» PoF-based models have been investigated to capture various degradation phenomena in
engineered systems

 Defect (e.g., cracks and anomalies) initiation and propagation can be derived by using
principles of physics

Updating PoF-based models by Bayesian approach

Sensor data contain rich information about system degradation behavior, and model-
based prognostics incorporates new sensor information to update PoF-based models. Among
the various approaches available to incorporate these evolving sensor data, Bayesian
updating is the most widely used
» Iterative Bayesian updating approaches

- Commonly used simulation approaches include iterative Markov Chain Monte Carlo
(MCMC) methods (e.g., Metropolis-Hastings and Gibbs Sampling)
* Non-iterative Bayesian updating approached

- Bayesian updating with analytical methods (e.g, importance sampling and rejection
sampling)

Seoul National University
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Model-Based : PoF-Based Models

Physics of Failure Models for Prognostics

» PoF-based models, clearly of interest from the prognosis viewpoint, are separated into
two major categories; 1) deterministic models 2) stochastic models

 Variations of available deterministic damage propagation models are based on physical
law (ex. Paris’ law, Fick’s law)
- Paris’ formula (fatigue crack propagation model)

da

— = Co(AK)™

= Co(aK)

where a = instantaneous length of dominant crack
N = running cycles
Co,n = material dependent constants -
AK = range of stress-intensity factor over one loading cycle R

Stress intesity factor range, AK, (MPay/m), log scale

Crack growth rate,da/dN, (m/cycle], leg scale

» Stochastic degradation models consider all parameters as random quantities thus the
resulting degradation equation is a stochastic differential equation.

- Cumulative damage model

t t
1
c(Xnsp) = c(Xp) + Doh(Xy) ——> j de(X,) = f dD, = D; — D,
0 0

h(Xy)
where ¢(-) = damage accumulation function
X,= cumulative damage after n
D,,= damage incurred at the (n+1)st increment
h(-) = damage model function

2019/1/4
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Model-Based : PoF-Based Models

Example - Health prognosis for power generator stator windings (1/2)
« Overview of stator windings

System Health &

Risk Management

Turbine End(TE) Axis of generator

 Crevice corrosion mechanism of stator winding

WATER BOX

MO I an ngy™ e Capacitance measurement
Gekiat b &+ Relative static permittivity
A £water :80.4
1) Cooling Water Ceee — Emica :56-6.0
r=o t &o: Electric constant
| Copper Strand (~ 8.854x10-12 F/m)
1} Solution at braze surface (inlet water) .
2) Water works its way into voids in braze and stagnates A: Area of tester
3) Crevice comosion of braze (primanly CuzP) . : : :
4) Critical solution or surface area conditions met, and Cu corodes o capacitance [pF] t: Thickness of insulation

5) Solution/surface area condiions change favoring braze comosion
&) Solution/surface area conditions change favaring Cu corrosion

7) Leak drives down the bar 1o outer surface

2019/1/4
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Model-Based : PoF-Based Models

Example - Health prognosis for power generator stator windings (2/2)
» Fick's Law of diffusion describes the time course of the transfer of a solute between two

compartments

 Calculation of concentration change of water impregnated into insulator over time using

Fick’s second law
Failure analysis

o Water absorption

Side of a winding

— RUL prediction

Fick’s second law Analytical model

om D azm m= (1 — exp [—7 3 <—D(t _ ti)ojs)]) m
at - ox? ' h? B

m = concentration of water in insulator
D = diffusion coefficient
X = position in sample

mq= Concentration of water at steady state
t; = Time when water absorption happened
h = Thickness of insulation

Case 1 Case 2
A
I T I T
SRLIE i i |
Threshold — e e S :
Warnirrg i | i Case 3
= [ i = | _
A Oy oy P GU SR R [Pt pupuyee
NG i i
[ N I/ R
ﬁ i i i i i
Healthy i i i i i
t1 t2 t3 t4 t5 t6
Time

DMD: Directional Mahalanobis Distance
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Model-Based :

 Bayesian updating with simulation approach

» Commonly used simulation approaches include iterative Markov Chain Monte Carlo
(MCMC)

e.g, Metropolis-Hastings, Gibbs Sampling

Iterative Bayesian Updating Approaches

2
o
S(t;) =Sy +3d-exp <ati2 + Bt; + (t;) — 7)
where S(t;) = degradation signal at time ¢t;
8, a, B = stochastic model parameters representing the uncertainty of generator operating conditions
& = random error term modeling possible sensor noise that follows a zero-mean Gaussian distribution

with std. deviation o
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Updating of a degradation model and RUL distribution
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Model-Based : Non-Iterative Bayesian Updating Approaches"

« Bayesian updating with analytical approaches
Ex) Rejection sampling, Importance sampling—>Particle Filter
» Consider a dynamic time sequential system with probabilistic state space model

Transition : X; = f(X;_1) + u;_4
Measurement : y;.1 = g(X;) +v;

Here x; is the vector of (hidden) system states at time t; = i - At, At is a fixed time step between
two adjacent measurement points, and i is the index of the measurement time step, respectively;
y; IS the vector of system observations (or measurements); and u; is the vector of process noise
for the states; v; is the vector of measurement noise; and f(-) and g(-) are the state transition
and measurement functions. It is aim to infer the system states x from noisy observations y

Kalman filter Particle filter
Linear Model Non-Linear Model
State space model X; = Fx;_1 +uj_4 X; = f(x;_1) +uj_q
Vit1 = Gx; +V; yi = g(x) +v;
Noise type Gal_Jssian, Any dis'tribution,
Unimodal Multimodal
Solution S_,olving exac_t solution Approximate solut_ion
(linear-Gaussian model) (Importance Sampling)
Computational speed Fast Slow

Seoul National University
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Model-Based : Kalman Filter

Example — Battery Health Prognosis (1/2)
» Overview of Battery Health Management

System Health &

Sensing Passive capacity: Cy;, = 20%, C,,, = 10%
= \Voltage +

= Current &
= Temperature ﬁ ﬁ ﬁ ﬁ
\ 1 | | | | |

Reasoning/Prognostics

= Reduced charge & discharge capacity of pack
= State of charge (SOC)

= State of health (SOH) Adanti itv: C. = 60%. C. = 40%
Legend - State of life (SOL) aptive capacily: Cas = 6076, Cenar = 40%
+
8 \oltmeter | [
 Amperemeter
Restoration action
B Thermocouple
= Decision making
100% l Charge le = Cell balancing —
vel = Cell replacement
0% P » Maximized charge & discharge capacity of pack
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Model-Based : Kalman Filter

Example — Battery Health Prognosis (2/2)
» Multiscale Extend Kalman Filter(EKF) for SOC & Capacity Estimation

AN

Xk I-1 No
B < Time update Xy 1™ Measurement update Macroscale achieved
X =Xt i T a/Cra (cell dynamic model) (go to Macro EKF)? Xk,IA7 (SOC)
5 x| Yes Micro EKF
I ] . Z . . - , Macro EKF
c tion Aﬁk{ ' | XL Measur ' ) I A (Capacity)
«  Cellvoltage % Cell current lcy=c,-+ SOC estimation >
49 - 80 . ‘ 100
E —Trug
g} 4 R 4OW‘ = 80 - Estimated
< @
238 bt e 60
I T 8 0 & g
§3'4‘ Cell voltage profile = Cell current profile ~ SOC estimation Capacity estimation ]
‘-g - ;1_2 | 80 " | ‘ I 100 I 8 h
S —True —True
g} 4 0 = 80 - Estimated E?.B — Estimated
S338 < 8 0 S76
236 g 0 2 ] PSSt
£ a g 403 %7.4
Z34 -0 - el 7.2
© 3 5 Zoom of first minutes ;
20 100 200 300 400 ) ‘P 40 150 160 170 180 190 GO 100 200 300 400 0 100 200 300 400
Time (min) Time (min) Time (min) Time (min)
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Model-Based : Particle Filter

Example — Machine Tool Prognosis (1/2)

e 20% of machine downtime from the failure of machine tools

* Indirect measurement of wear from the sensors such as force, vibration, and so on
* Non-linear process of tool wear growth with non-Gaussian noise

Accelerometer

I | Indirect measurement of wear with vibration
Milling ,
machine ﬂ/ l ""”“ ” “ ' H
= '{( - . X 3 !‘

; = - Direct measurement of wear

Severedlear
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Model-Based : Particle Filter

Example — Machine Tool Prognosis (2/2)
* RUL prediction with wear growth model and particle filter

Wear Tracking
1.2 T I T T T
Wear growth model L —— Actua weer oo I
0.8 #  Online measurement B
8 . 1H == === Median of prediction - — — -—— ~
dx 206 5 vnesesss 90% P of prediction v
- = m = N
dt =Cx §' 0.4 I_Eﬂ 08l A i
. 0.2 2 i
x: wear width 0 , ‘ TIIRL)’ ey - |
C, m: model constant 0 100 200 300 3
Cut number £ L p
0.4 BRI 06 07 08
.............. Leaming stage | Prediction stage
Measurement 0'20 5'0 160 150 2(110 250 300
Zk = xk + vk Cut number
discretization v).: measurement noise .
z;.: feature from signals RUL Prediction
0.4
A\ 4 0.3}
System model Particle Filter >
_— p(xklzk S e % 02
X = Cro1x, 27 dt+ X5y | ——-oo = 99956 5504 . 2
:\‘Io ! N e / \-\v s
X).: Wear state p(xk |xk_1) o : . ot
Cy, my: uncertain constant ! !
odD 50 60 70 80 a0 100 110 1200
RUL(cut number)
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Data-Driven Prognostics

System Health &

 Data-driven prognostic techniques utilize monitored operational data related to system

health

» The major advantage of data-driven approaches is that they can be deployed more
quickly and often at a lower cost, as compared to other approaches

* In addition, data-driven techniques can provide system-wide coverage

» Three approaches can be used for online RUL prediction in data-driven approaches;
interpolation, extrapolation, and machine learning

3
i 1
0.0 Otfline degradation curve h,, B Online dat
ot : nline data
. 08 e Online data h, L
(] + 4 + 4
2 07|, ee 2
SR AR A o + b v’zg. |
= * E % R R
Zops Z e \I)‘:- s 2+ |
Toal T AT TN ;
'E 03 Moving data along time : i
S axis to find best T, i
< !
1
041 1 o Extrapolation \
1
il ! . i
-200 -150 -100 50 0 “a &0 100 1= 20 20 300
Adjusted cycle index Cycle index
a) b)
( Output layer O ( pes e
H Time delay
Time delay N wor ¥ Wor
Recurrent layer R
| Whe W
|
Context layer B Input layer/
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Data-Driven : Interpolation-based approach

Similarity-Based Interpolation
» Background health knowledge model using relevance vector machine (RVM)

N

h(t) =Y og(t—t)+et) or h=®-0+¢
i=1

where ¢ is a kernel density function

 Conditional remaining useful life (CRUL) from each h;(t)
« Given: CRULs (CRUL;) from background knowledges
« To find the similarity weights (W,) for all RULs

Similarity weights 12—
N 5 -1 -
_ p 5
Wi - Z(hi(tj)_hi (tj)) 2
=1 g
% 04} 5x10
Remaining useful life (RUL) of an online unit g 02 L AT s
FPredicted RUL
o at T = 2000 minutes Fredicted RUL
1 K K %4' I at T = 2000 minutes
RUL:W;(Wi -CRUL;) where W =;Wi Tt ko bl | ’
£ 2t
W
' hk JH h_ mﬂ ..
00 1000 1500 2000 2500 3000 3500
RUL (Minutes)
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Data-Driven : Interpolation-based approach

Similarity-Based Interpolation

~ OfflineUnit1  Offline Unit2  Offline UnitK -
Lo Onlinedata | 19/ Online data Lo Online data
o8 © o, 08 u& ° o 0.8
E M—N
=06 0.6 - 1 06/
3 b N
Toar 04f ! ] 04/
s
oo Background health 02" Background health 02" Background health
> knowledge knowledge \ knowledge \
0 C 1 1 1 L 1 \ 0 C 1 1 1 L 1 ] 0 C 1 1 1 L I ]
-300 -250 -200 -150 -100 -50 O -300 -250 -200 -150 -100 -50 O -300 -250 -200 -150 -100 -50 0
Adjusted Cycle Index Adjusted Cycle Index Adjusted Cycle Index
5551 = 812 4 oeee + e42 SSEZ = elz 4 ooee e42 cee SSE/(= 312 ooee e42

Initial health state determination

Similarity-based interpolation

I}::L(Wi'lll'i'%'fl2+"'+WK'£K)’ W,=SSE
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Data-Driven : Extrapolation-based approach

Bayesian linear regression

Prior Curve Posterior Curve
h(t) = b,t2 + bt + b, R

s L ikelinood

Prior for linear model parameters

+* .

*
MR
e "4
R

FoTTTT s Foossoommmm e e ! x Prior
b; ~Ni(wj,09): | | Offline fitting ! 2 r / curve
L I = 06}
E
Posterior for B li del t = %4 Online data
(45}
osterior for Bayes linear model parameters E (ikelihood)
S 02t
b=(®X1®)d™ X1h Posterior
. | ~curve |
P _ _ o 0 50 100 150 200 250
, @: Online design matrix | Cycle Index
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Data-Driven : Extrapolation-based approach

Example —Power Transformer Prognosis (1/2)
 Classified health grades without failure data (unsupervised) in a statistical manner

Grade A (healthy): h > ®(-1.00)

Health condition Marginal CDFs

h(Xl, X2) =1- Fl(xl) - F, (xz) ‘ ) Statistical Grade B (warning): ®(-2.00) <h < ®(-1.00)

ealth grades
+C(F1(X1)’ FZ(XZ)) : Grade C (faulty): h< ®(-2.00)

Joint CDF (copula)

40

» Gaussian copula .
- Raw data 35¢ - 1
% Failure LS
=3 , © 30} ®
= S O @ w-ict
o — A P L 25-
O ®© . B = a R ‘ YK-1C3
E S s F e © o EZP! ’
=2 i o = L U
c O AR = Warning * .. .
- = 3 iy © 15+ . "
[72) ';x .9 .o .
" — L L
s s =z 10
1 5 I K
RO Safe
‘ ‘ . ; v
15 20 25 30 0 : . : - :
RMS 0 5 10 15 20 25 30

RMS
Health Reasoning : Statistical Health Grade System

2019/1/4 Seoul National University



I I Chapter 6. Health Prognosis

System Health &
Risk Management

Data-Driven : Extrapolation-based approach

Example —Power Transformer Prognosis (2/2)
» Proved feasibility in health prognostics with limited data obtained in 2 years

“lRun time\lRUL

< rd

~ h(t)

h(t)=1-a-exp(bt)

Current ™
H I—\l time
Health/

Initial health condition Health degradation projection

Failure time { Time
o>—>

25

>
| &
2 2 20
T 2 I

) )
o oo [
e a p = 15
© I S e
© = - o
© A = 3
o0 o L 1ot
() (Y o
(=) e =

o )
e el x
3 2 I
(]
o

1 2 3 4 5 6
Transformer ID
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System Health &

Data-Driven: Machine Learning-Based Approach

* In contrast to the interpolation- or extrapolation-based approaches, the machine learning-based
approach does not involve any visible manipulation ->black box model

* It requires the training of a prognostics model using the offline data
* Itis capable of learning nonlinear dynamic temporal behavior, e.x, RNN (Chapter 6)

WRI . weights of input and recurrent layer

WOR . weights of recurrent and output layer

WRC : recurrent weights

Output layer O

Time delay WOR

Recurrent layer R

WRC WHI

Context layer R Input layer /

R® : recurrent units
RGt-D . previous recurrent units

f :activation function(sigmoid, tanh, ReLu)

Seoul National University
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Data-Driven: Machine Learning-Based Approach

Example — (Mahamad et al, 2010)
» Using IMS bearing test bed signal (RMS, kurtosis)
 Input data : 6 nodes
— Current and previous time
— RMS at current and previous time (fitted with Weibull hazard rate function)
— Kurtosis at current and previous time (fitted by Weibull hazard rate function)
» Qutput : life percentage (normalized)

Input Data —+— =actual
Time and Measurement value 2y ——— = pradiction
y i
Construct the fitted measurement E r
value as training set S ol T L1+
v r L +
E‘l 1
Train ANN £ o8| 1] | B
Y & oal I-F' | W
Validate ANN £ | l
¥ 0,2 1 ]
Predict the life percentage of . N . RS |
bearing failure o 49 60 A 100
Observation Data
Flow chart The output performance

Seoul National University



Case Study: LDI (Model-Based )

Overview of Liquid Damage Indicator (LDI) Prognostics (Oh, et al. 2015)
 Liquid Damage Indicator / Liquid Contact Indicator

- Asmall indicator that turns from white into another color, typically red, after contact with water
- Numerous complaints are reported regarding the performance of LDIs

- Several law suits were filed for denying warranty service to customers based on inaccurate LDIs
(ex. iPhone 3G)

* Objective
- To devise an deficient scheme for evaluating the performance of LDIs
- To develop a performance degradation model

=
S2E 20 AE 20 WRICZE 4elH| 408k =5

T 2] 00| W4 7|5 42 H| ZEF 20t S0 \

‘5498 7|A sy@csnews.co.kr = 2018908200900 =201
Apple Settles iPhone Warranty Lawsuit With
220 /08 /0|0 $53 Million Payout

O = OfO|& A[2| =9 g4 J=0f Tf

HEE 1m ZI0]2] E0IM 3022 &
2EE HolF0 UAR HH AE
ARchs A0l A 7= QAT 28|
=X € RFstD Qlct

AEE7t ofEZR 2|0t A2 Qo
& P £HAES 202 S
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Case Study: LDI (Model-Based )

Two Main Physics Mechanisms
 Phase change from vapor to water
o PET film
- V « (AT) ' & Porous paper
- V is the volume of condensed water after phase change Red ink layer
] ] Adhesive layer
- AT is the temperature difference
- mis the model constant

System Health &

7

Before water contact

« Water transport in the paper (capillary action)
- x x nk
- x Is the distance of penetration

- n is the number of thermal cycles

- k is the model constant

After water contact

1
atm

P T

7 100 374

¢ o TC
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Case Study: LDI (Model-Based )

Accelerated Life Test for LDIs

 Step 1: Determination of test conditions

- According to technical data,
the operational condition is -40°C to 60°C and
highly humid condition (95% RH at 55°C) 1 -30

Test no. Chamber 1 (°C) Chamber 2

25°C, 95% RH

- The use conditions for portable electronics with 2 25 h b
1) LDI FPCB
a use temperature range of -20°C to 45°C, 3 -20 2)) LDIZ 22 tthi e :ﬂb:g:::
and a relative humidity of 5-95% 4 -15

» Step 2: Steps for life tests

I. Execute a 30-min test for a sample in chamber 1

I1. Execute a 5-min test in chamber 2 as soon as the sample is taken out of chamber 2
I11. Take a picture of the sample after Il under a predefined light and angle condition
IV. Repeat I-111 until the sample experiences 50 cycles or the LDI turns entirely red.

 Step 3: Quantification of performance degradation

_ B G B g b

.| whitepixel, if G;+ B; > g"¢® + b"e? N / SN,

- Apixel = , ) g
red pixel, otherwise . \
_ ~red + BTEd — + + 5{ + } _— \ GB samples obtained
'g - #Gre‘i HBTEd O-GTEd O-BTEd HpToay o ‘\\\ from white pixels
- G; and B; denote the G and B values of the ith pixel A G sampes chsined
- g"®% and b™*¢ indicate the G and B value margins in red —
Hgtoag e}
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Case Study: LDI (Model-Based )

Degradation Model for LDIs
» A Novel Performance Degradation Model for LDIs
- D(n; AT) = 100 — a(AT)?n¢
- D is the index that represents the performance degradation for LDIs (%)
- a, b and c are the model constant

System Health &
Risk Management

Dataset 1 (-30°C to 25°C) Dataset 6 (-25°C to 25°C)

(00}
o
T

Dataset 2 (-25°C to 25°C)

B (2]
o o
T T

N
o
T

Performance degradation (%)
Performance degradation (%)

S-69
000609
Seooocccon
90605006

Np-eoa
S6g

0 10 20 30 40 50 0 10 20 30 40 50
Number of thermal cycles Number of thermal cycles
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Case Study: LDI (Model-Based )

Validation of Proposed Model
» The cycles to failure was calculated using the proposed model.
» Two actual iPhone 3G were tested between -15 °C and 25 °C with 95% relative
humidity.

» The amount of error in the prediction is reasonable considering inherent randomness
In the specimen and measurement error.

ﬂ)(n;AT)zmo—a(AT)b n\

a=0.005312
(lower bound, upper bound) =
(0.0008927, 0.009731)
b=2.015
(lower bound, upper bound) =
(1.81, 2.22)
c=0.5199

(lower bound, upper bound) =
K (0.4886, 0.5512) /

Predicted cycles to failure (CTF): Actual CTF of the two iPhones:
21 cycles 4 and 16 cycles

I I Chapter 6. Health Prognosis E®m
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Case Study: OLED (Model-Based )

Overview of Organic Lighting-Emitting Diode (OLED) Prognostics
(Kim, et al. 2017)

* Issues of OLED Prognosis

- The organic light-emitting diode (OLED) technology are more visual compelling and power
efficient than liquid-crystal displays (LCDs)

- OLED TV with layered structure and materials is subject to a great deal of manufacturing and
operational uncertainties

- Light-emitting layer and TFT are the major contributors to the degradation of OLED TV, which
are correlated in a complicated manner

» Objective
- To propose a reliable lifetime model of large OLED panels that incorporates manufacturing &
operational uncertainty under various usage condition

- To develop an effective scheme that predicts OLED TV reliability accurately and efficiently at an
early product development stage.

vl
AR
ddm =

pixel L

S‘uEp'i;el a
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Case Study: OLED (Model-Based )

Failure Modes and Failure Mechanism

e OLED TV Panel

- OLED TV degrades over time by a luminance changes and color shift

- Light-emitting layer and TFT are the major contributors to the degradation of OLED TV, which
are correlated in a complicated manner.

System Health &
Risk Management

v" Local heat source
v" Natural convection

® Luminance
change

after long time usage

v Spatial deviation of temperature @ Color shift

v Degradation mechanism of two
components — TFT & emissive layer
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Case Study: OLED (Model-Based )

Life Tests for OLED

» Major acceleration factors

Ambient temperature and initial luminance intensity

Six sets of OLED panels for the accelerated degradation tests (ADTS)

Temperature: 3 sets in convection oven (25C) and other 3 sets (40C)
Luminance intensity: 4 levels of luminance intensity (x1, x2, x4, x6)

 Measurement interval
- Measurements were conducted at variable intervals between 24 - 180 hrs.
- until an operating time reached 1,500 hours

- Out of 36 patterns, R/G/B/W were excluded. As a result, 28 patterns were used for the
measurement data

Initial luminance intensity  Total number

panel  TEMPerature  (The number of pattern)  of patterns
condition w1 X2 x4 X8 (168)
#1 25T 7 7 6 8 28
#2 25T 7 7 7 7 28
#3 25C 7 7 7 7 28 Pxal ozl W b bzl e TR
) [xa] [x6] [x2] [x6 [xa] [x1]
#4 40°C 7 7 7 7 28 e et s s o s
#5 40C 7 7 7 7 28 (W] [x6] [xal [x6] [xal [x1]
#6 40C 71711 28 e e Sl s Rl e
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Case Study: OLED (Model-Based )

Degradation Model for OLED
» A Novel Bivariate Performance Degradation Model for OLEDs

System Health &

Risk Management

B D
- MTTF(T, iyy) = % . ekt - @llum(C+ip)

- By integrating the two lifetime models; Arrhenius equation (temperature), inverse power law
(luminance)

- k is the Boltzmann constant; T is the ambient temperature; I, is the initial luminance intensity;
and A4, B, C and Dare the model parameters ¢

Initial luminance Twice the initial Four times the initial Six times the initial
intensity (x1) luminance intensity (x2) | luminance intensity (x4) luminance intensity (x6)
1% Seuv S A 3 1 ® Observed data at 25C

O Observed data at 40T
—— Estimated curve at 25T
— — -Estimated curve at 40

ancelnit]

0.2F

) - OuN

0 500 1000 1500 0 500 1000 1500 O 500 1000 1500 0 500 1000 1500
Timefhr] Time[hr] Time[hr] Time[hr]
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Case Study: OLED (Model-Based )

Validation of Proposed Model
o 21 failure data under use condition employed for validation.

e The MTTF of the 21 failure samples was 1,876 hours, whereas the MTTF estimated
from the proposed model was 1,959 hours.

Estimated lifetime Chi-square GoF test KS GoF test
MTTF,_, = 5
Model obs Error Hypothesis P-value Hypothesis P-value
1875
Proposed 1959 1% Accept 1.66X10! Accept 6.38X102
Peck’s Model 2607 39% Reject 8.09<10° Reject 5.61X107°
Intel’s Model 2277 21% Reject 8.77X10* Reject 4.72X107
x107
' i ' ____ CDF of observed TTF
1r |:] PDF of observed TTF 1 Estimated CDF by Peck model
PDF by Peck model ___Estimated CDF by Intel model
0 8 L PDF by Intel model 1 — — - Estimated CDF by proposed model
’ ~~"PDF by proposed model 1
E v Observed MTTF
% 06 = Estimated by Peck model g 08
Q2 * Estimated by Intel model §
o e Estimated by proposed model £ 06 |
004 : - 2
S o4 |
g
027 © o2 |
0 1 000 3000 . 50‘00 0 15&)0 - 3006 5000

Lifetime (hour)

Lifetime (hour)
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Case Study: Steam Turbine (Model-Based )

Overview of Steam Turbine Prognostics (Choi, et al. 2018)

* Issues of Steam Turbine Prognosis
- The design life of steam turbine is typically 25 years of 200,000-250,000 h
- Premature failure of the power plant machinery is the one of main interests for operators

- The RUL of key elements could be predicted by metallurgical or theoretical analysis of as-
received and degraded element but it is difficult to quantify the health conditions from results

* Objective
- To quantify the result of the hardness measurement method that is most commonly and easily
used in actual field

- To propose a new damage growth model within the Bayesian statistical framework that can
utilize sporadically measured and heterogeneous on-site data from stem turbines

Blade r Coupling

Outer casing

(‘?&:ﬂ;:‘ X ] ) ; L
§ L § B () OM (X500) and SEM (X3000) image of a high-stress location
& . &\ Seal
/%’,,/ﬂﬂw‘v} ) ; \K Inner casing : ’ et i
Iy ol \
o F g %
\‘5 i J \ __— Pipe connection

Schematic of a steam turbine Metallurgical changes of rotor steel after 146,708 h operation

Tl

e ot o

(b OM (X500} and SEM (X3000) image of bow-stress locatbor
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Case Study: Steam Turbine (Model-Based )

FMEA for a Steam Turbine
« Among the components of the steam turbine, HIP rotor has the highest severity and risk
» Creep and low/high cycle fatigue are known to be the dominant mechanisms
» High temperatures and centrifugal force causes creep damage in high-stress regions

» Thermo-mechanical fatigue damage from the the thermal cyclic load causes cracking at
the wheel corner

Comp. Failure cause Failure mechanism Failure mode  Occurrence  Severity Risk
HIP(High-Intermediate Pressure) steam turbine

Rotor Temp. cycling  Creep, LCF Fracture Not often Very high  High

HP blade Temp. cycling  LCF, HCF Failure Not often High Moderate
HP casing  Temp. cycling = CREEP, LCF Crack Not often Moderate =~ Moderate
IP blade Temp. cycling  LCF, HCF Failure Not often High Moderate
IP casing Temp. cycling  CREEP, LCF Crack Not often Moderate =~ Moderate
LP(Low Pressure) steam turbine

Rotor Wet. Cycling Corrosion, LCF Fracture Not often High High
Blade Wet. Cycling LCF,HCF, Corrosion  Failure Often Moderate Moderate
Bearing Wear Wear Vibration often Low Moderate

Seoul National University




Case Study: Steam Turbine (Model-Based )

Characteristics of On-site Measurement Data
* It is extremely difficult to measure material degradation directly
» Material hardness data was achieved both low-stress and high-stress conditions
» The harness in a low-temperature region can be used as a reference hardness
» Ten sets of the hardness data set were sporadically measured at overhauls over 10 years

Quantitative Damage Index for the Hardness Data
» Hardness Damage index was introduced that takes into account both creep and fatigue

damage
D=1 i _ | Ha
~ H ~ H,

where H, and H,, are the hardness values measured at aged and virgin

High-stress location

low-stress location

Seoul National University
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Case Study: Steam Turbine (Model-Based )

Damage Growth Model using Sporadically Measured and Heterogeneous On-site Data

* New damage growth model that utilizes the hardness damage indices

- Bayesian inference and Markov Chain Monte-carlo(MCMC) techniques are used to update the
parameters
- The damage growth model can be defined in the form of a distribution as
D(t) ~ N(up (1), 05 (1))
where up (t), op (t) are the mean and standard deviation of the time-varying damage
- Metropolis-Hasting algorithm to generate samples that MCMC simulation

0.45 T T T T 0.055
—— Mean by Bayesian —— Mean by Bayesian
0.4 — — 8% Ci by Bayesian fa 0.05 — — 80% Cl by Bayeslan
—— Mean by Misg & — Maan by Nisq
] 90% CI by Nisq
p— 0.045
x 0.04
% 03 ﬁ
£ € n.03s
& 0,25 &
= @
] E o003
5 02 =
§ - 0.025 |
=015 @
0.02
0.1
0.015
0.08 | 0.01F
" o . . . s
0.5 1 15 2 25 3 0s 1 15 L 25 3
Operating time{hour) «10% Operating time (hour) «10%
(a) Mean (b) Standard deviation

Mean and standard deviation results obtained by performing the Bayesian updating
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Case Study: Steam Turbine (Model-Based )

Validation of Proposed Model
* RUL prediction at three operating times (0, 200,000h, and 250,000) to determine an
appropriate failure criterion
 Failure criterion of the damage index 0.2 gives a reasonable RUL for steam turbine
with the actual retirement history of steam turbines

1.2 v . . . . .
—— Mean by Bayesian 157 Predicled(160,000 data) ||
=~ = 80% Cl by Bayesi —

- — Mean bL|sqV°5'a” | | True (25 dala)
90% Cl by Nisg

08 Threshold 0.8
b 10 |
2 o
» 06 @
P g
E ' L
o 04 5| 1 i

02 Threshold 0.2 l a

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 0.05 0.1 0.15 0.2 0.25 0.3

Operating time(hour) Damage index at 255,000 hour
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Case Study: Ensemble Method (Data-Driven)

Overview of Ensemble Method

 Limitation of single prognostic algorithm

- Dependency of the algorithm’s accuracy on training data set
—> Number and type of training data affects algorithm’s accuracy

- Weak for variable manufacturing, environmental and operational conditions
—> More robustness for various operating conditions is necessary

- Difficulty reflecting various types of degradation trend.
—> Each algorithm can produce good results for only appropriate degradation trends

» Combination of multiple algorithms to form a hybrid algorithm

- To improve the robustness
—> For type of algorithm

1

—> For operating and environmental conditions B I T
- For type or number of input data ZZ " TV | Threshold
- To increase accuracy of algorithm 1330_? l'
—> Sum of multiple algorithms’ results Eos!
§0_4
%o_s-
“?0_2
0.1 "‘I

0 1 i Il i 1 i 1
] 200 400 600 800 1000 1200 1400 1600 1800
Time [Hours]

Example for Ensemble method
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Case Study: Ensemble Method (Data-Driven)

Procedure of Ensemble approach
« STEP 1 : Acquire offline training sensory signals

o STEP 2 : Offline Process
— STEP 2a : Perform the offline training and testing processes with k-fold cross validation(CV) with
the training sensory signals to compute the CV error
— STEP 2b : Determine the weights using 3 weighting schemes
(accuracy-based, diversity-based, optimization-based)

o STEP 3 : Acquire online testing sensory signals
« STEP 4 : Online Process

— STEP 4a : Predict RULS using the member algorithms through the online prediction process
which employs health knowledge obtained from the offline training process

— STEP 4b : Predict the ensemble RULSs with the optimum weights obtained from STEP 2b

Training Testing
Signals NEGEIS

Offline Process Online Process

Training & Predicted

Weight Member RUL Ensemble of

RULs
determination predictions RULs

testing with
cVv

Flowchart of the ensemble method
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Case Study: Ensemble Method (Data-Driven)

Details of Ensemble Method
» Ensemble of 5 Prognostics Algorithm

— Similarity-based interpolation approach
* RVM (Relevance Vector Machine), SVM (Support Vector Machine), Exponential fitting

— Extrapolation-based approach
» Bayesian linear regression

— Recurrent neural network approach
» Weighting schemes
— Accuracy-based weighting
» To give larger weight to an algorithm with higher prediction accuracy

— Diversity-based weighting

» To give large weight to higher prediction diversity algorithm, contributing more to the
ensemble RUL

— Optimization-based weighting
» To maximize the accuracy and robustness by synthesizing the accuracy & diversity

» Weighted-sum of predicted RULSs by 5 algorithms

M
L= ) whY)
j=1

(L : ensemble predicted RUL, w; @ weight to the jth algorithm, Lj : RUL by jth algorithm)

Seoul National University
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Case Study: Ensemble Method (Data-Driven)

Case Studies for Validation of Proposed Model
» Apply Ensemble model to 3 sensory data
— 2008 PHM challenge data, Power transformer, Electric cooling fan

» Weighting results (Electric cooling fan)

RS 5§ ES QB RN RS-55-ES-QB-RN
AW DWW ow
Weight by AW 0.3646 03767 0.2552 0.0008 0.0027 - - -
Weight by DW 01423 01427 0.1496 03285 0.2369 - - -
We ight hy ow 01155 08845 0.0000 0.0000 0.0000 - - -
CV error 1.4770 1.4298 21100 717.8430 199.0067 1.5188 11.8520 1.4292
Validation error 07027 09223 07037 461.5064 84,3975 0.7185 110177 0.6984
* RUL results plot
250 200 250
—True —True s
ES + Ensemble /
200 - QB 200 |
| = Ensembile 150 | " -”
) $ 2 150 ’
[%] w {5!‘
g & 100/ &
= <! 3 100
3 : ?
| & ol 50
o o £% : ! oler
0 50 100 150 200 250 0 50 100 150 200 . S 10 15 20 25
Unit ID (sorted) Unit ID (sorted) Unit |D (sorted)
2008 PHM challenge data Power transformer Electric cooling fan
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Case Study: Co-Training Method (Data-Driven)

Co-training algorithm is a machine learning algorithm using small amounts of labeled data
and large amounts of unlabeled data, it is often called as Semi-Supervised Learning

Overview of RUL prediction using Co-training method (Chao et. al., 2015)

* Issues of traditional data-driven prognostics
- It requires some amount of failure data for achieving good prediction accuracy
- Failure data are fairly expensive and time-consuming to obtain
- Suspension data* are relatively easier to obtain than Failure data

» Objective
- To improve the accuracy in RUL prediction using small amount of Failure data and large amount
of suspension data

Labeleddata . Testdata

e Sampl T e el e T

Sa p e space A N s “o"

- Failure data (Labeled, small amounts) ®° o

|
- Suspension data (Unlabeled, large amounts) e @ e® o=
L .. L
%e &

Prognosis sample space

* Suspension data : condition monitoring data acquired from the very beginning of an engineered system's lifetime till planned
inspection or maintenance when the system is taken out of service.

Seoul National University



Case Study: Co-Training Method (Data-Driven)

COPROG (CO-training PROGnNostics) Process

 Algorithml : FFNN (Feed-forward neural network)
- Prediction accuracy is quantified using the SSE performance function (or the validation error)

LP : Predicted Normalized RUL
= 2 p _ 1T\2
SSE Z € Z(L L) LT : True Normalized RUL

 Algorithm2 : RBN (Radial basis network)
- It is ANN that uses radial basis functions as activation functions

- The output layer weights is determined which the best approximate the training instances by a
matrix pseudo-inverse technique

Suspension data (unlabeled training data)
label £ —

Labeled . _ Labeled
Unlabeled Algorithm1 Algorithm 2 Unlabeled
(suspension) _ (FFNN) (RBN) (suspension)
data train _ data
j train \_

{ Failure data (labeled training data) ]

Flowchart of training process in COPROG
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Case Study: Co-Training Method (Data-Driven)

COPROG (CO-training PROGnNostics) Process

* lterative Training process
(1) training each algorithm using labeled data
(2) predicting label of unlabeled data using trained algorithm
(3) Training using labeled unlabeled data also

* Iterative training is repeated until no suspension unit can be found to be capable of
reducing the prediction error of either algorithm on its training data set

Suspension data (unlabeled training data)
label £ —

Labeled . _ Labeled
Unlabeled Algorithm1 Algorithm 2 Unlabeled
(suspension) _ (FFNN) (RBN) (suspension)
data train _ data
j train \_

{ Failure data (labeled training data) ]

Flowchart of training process in COPROG
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Case Study: Co-Training Method (Data-Driven)

COPROG (CO-training PROGnNostics) Process X; : Training input instance

L : labeled training data set

2
Minimize  SSE = z (Lf — (w1h1 (X;) + wyh, (Xl-))) LT : True Normalized RUL
Xi€L h : Training Function

Subject to witw,=1,05w; £1,05w, <1 (1=FFNN, 2=RBN)
w . weight

» Confidence Measure
- It is need to identify the appropriate suspension unit and to minimize SSE in RUL prediction on the

failure units

» Weight Optimization
- the RUL predictions of these two algorithms are combined in a weighted-sum formulation as the

final prediction

60 T T 60 500 —
Initial FFNN - Initial RBN - Co-training
50 - Final FFNN 1 50| . FinalRBN | 00 — e
o == =
L s g 300
S 9 9
5 3 = 200
= 3 z
100
IR il " L " L 1 0 L 1 L 1 L 0 - n - n
0 500 1000 1500 2000 0 500 1000 1500 2000 0 1000 2000 3000 4000 5000
Time (min)

Instance ID (sorted) Instance ID (sorted)

RUL predictions for a testing fan unit by co-training prognosis
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