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7.1 Entropy Changes in Reversible Processes

For reversible process,        𝜹𝒒𝒓 = 𝒅𝒖 + 𝑷 𝒅𝒗

1. Adiabatic process : 𝜹𝒒𝒓 = 𝟎, 𝒅𝒔 = 𝟎, 𝒔 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕

2. Isothermal process :       𝒔𝟐 − 𝒔𝟏 = 𝟏
𝟐 𝜹𝒒𝒓

𝑻
=

𝒒𝒓

𝑻
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3. Isothermal (and isobaric) change of phase :   𝒔𝟐 − 𝒔𝟏 =
𝒍

𝑻

4.   Isochoric process :      𝒔𝟐 − 𝒔𝟏 = 𝟏
𝟐
𝒄𝒗

𝒅𝑻

𝑻
= 𝒄𝒗 𝐥𝐧

𝑻𝟐

𝑻𝟏

5. Isobaric process :        
𝜹𝒒𝒓

𝑻
=

𝒅𝒉

𝑻
−

𝒗

𝑻
𝒅𝑷 = 𝒅𝒔

𝒔𝟐 − 𝒔𝟏 = 𝟏
𝟐
𝒄𝒑

𝒅𝑻

𝑻
= 𝒄𝒑 𝐥𝐧

𝑻𝟐

𝑻𝟏

7.1 Entropy Changes in Reversible Processes
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7.2 Temperature-Entropy Diagrams

𝒒𝒓 = 𝟏
𝟐
𝑻 𝒅𝒔

ර𝑻𝒅𝒔 = 𝒒𝒓 = 𝒘

[1] http://juanribon.com/design/carnot-cycle-pv-ts-diagram.php 2017.02.27

Figure7.1 T-s diagram for a Carnot cycle [1]

The total quantity of heat transferred in a 

reversible process from state 1 to state 2 

is given by

The T-s diagram is simple rectangle for a 

Carnot cycle. The area under the curve is 

http://juanribon.com/design/carnot-cycle-pv-ts-diagram.php
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surroundings

𝑇 + 𝑑𝑇

System

𝑇

𝑑𝑞𝑟 > 0

7.3 Entropy Change of the Surroundings (Reversible)

The heat flow out of the surroundings at every point is equal in 

magnitude and opposite in sign to the heat flow into the system.

𝑑𝑞𝑖𝑛 = 𝑑𝑞𝑜𝑢𝑡 = 𝑑𝑞𝑟

For a reversible process,

𝑑𝑇 ≪ 1
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surroundings

𝑇 + 𝑑𝑇

System

𝑇

𝑑𝑞𝑟 > 0

|𝒅𝒔|𝒔𝒖𝒓𝒓𝒐𝒖𝒏𝒅𝒊𝒏𝒈𝒔 = − 𝒅𝒔 𝒔𝒚𝒔𝒕𝒆𝒎 & 𝒅𝒔 𝒖𝒏𝒊𝒗𝒆𝒓𝒔𝒆 = 𝟎

7.3 Entropy Change of the Surroundings (Reversible)

𝒅𝒔𝒔𝒚𝒔𝒕𝒆𝒎 + 𝒅𝒔𝒔𝒖𝒓𝒓𝒐𝒖𝒏𝒅𝒊𝒏𝒈𝒔 = 𝒅𝒔𝒖𝒏𝒊𝒗𝒆𝒓𝒔𝒆,

( 𝜹𝒒𝒓
𝑻+𝒅𝑻

)𝒔𝒖𝒓𝒓𝒐𝒖𝒏𝒅𝒊𝒏𝒈𝒔 ≈ 𝜹𝒒𝒓
𝑻 𝒔𝒖𝒓𝒓𝒐𝒖𝒏𝒅𝒊𝒏𝒈𝒔

= (𝜹𝒔)𝒔𝒖𝒓𝒓𝒐𝒖𝒏𝒅𝒊𝒏𝒈𝒔

So,

and from
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surroundings

𝑇 + Δ𝑇

System

𝑇

𝑑𝑞𝑟 > 0

However for an irreversible case, 

Δ𝑇 > 0

7.3* Entropy Change of the Surroundings (Irreversible)

𝜹𝒒𝒓
𝑻 𝒔𝒖𝒓𝒓𝒐𝒖𝒏𝒅𝒊𝒏𝒈𝒔

> ( 𝜹𝒒𝒓
𝑻+Δ𝑻

)𝒔𝒖𝒓𝒓𝒐𝒖𝒏𝒅𝒊𝒏𝒈𝒔 = (Δ𝒔)𝒔𝒖𝒓𝒓𝒐𝒖𝒏𝒅𝒊𝒏𝒈𝒔

and
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7.3* Entropy Change of the Surroundings (Irreversible)

Δ𝒔𝒔𝒚𝒔𝒕𝒆𝒎 + Δ𝒔𝒔𝒖𝒓𝒓𝒐𝒖𝒏𝒅𝒊𝒏𝒈𝒔 = Δ𝒔𝒖𝒏𝒊𝒗𝒆𝒓𝒔𝒆 > 𝟎

(Entropy generation!)

So,

surroundings

𝑇 + Δ𝑇

System

𝑇

𝑑𝑞𝑟 > 0
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7.4 Entropy change for an Ideal Gas

With 𝒅𝒖 = 𝒄𝒗𝒅𝑻, we have

𝒅𝒒𝒓
𝑻

=
𝒄𝒗𝒅𝑻

𝑻
+
𝑷

𝑻
𝒅𝒗 = 𝒅𝒔

For a reversible process, For an ideal gas, P/T = R/𝑣 , so

𝒅𝒔 = 𝒄𝒗
𝒅𝑻

𝑻
+ 𝑹

𝒅𝒗

𝒗

Integrating, we have

𝒔𝟐 − 𝒔𝟏 = 𝒄𝒗 𝒍𝒏 (
𝑻𝟐
𝑻𝟏
)+ 𝑹 𝒍𝒏 (

𝒗𝟐
𝒗𝟏
)
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7.5 The Tds Equations

𝑻𝒅𝒔 = 𝒄𝒗 𝒅𝑻 + 𝑻 (
𝝏𝑷

𝝏𝑻
)𝒗 𝒅𝒗 (𝒔 = 𝒔 𝑻, 𝒗 )

𝑻𝒅𝒔 = 𝒄𝒑 𝒅𝑻 − 𝑻 (
𝝏𝒗

𝝏𝑻
)𝒑 𝒅𝑷 (𝒔 = 𝒔 𝑻, 𝑷 )

𝑻𝒅𝒔 = 𝒄𝒑(
𝝏𝑻

𝝏𝒗
)𝒑 𝒅𝒗 + 𝒄𝒗 (

𝝏𝑻

𝝏𝑷
)𝒗 𝒅𝑷 (𝒔 = 𝒔 𝒗,𝑷 )

From the combined first and second laws,  𝐓𝐝𝐬 = 𝒅𝒖 + 𝑷 𝒅𝒗
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7.5 The Tds Equations

𝑻𝒅𝒔 = 𝒅𝒉 − 𝒗𝒅𝑷 = (
𝝏𝒉

𝝏𝑻
)𝑷𝒅𝑻 + 𝑻 (

𝝏𝒉

𝝏𝑷
)𝑻 𝒅𝑷 − 𝒗𝒅𝑷

𝒅𝒔 =
𝟏

𝑻
(
𝝏𝒉

𝝏𝑻
)𝑷𝒅𝑻 +

𝟏

𝑻
[(
𝝏𝒉

𝝏𝑷
)𝑻 − 𝒗]𝒅𝑷

Let 𝑇 𝑎𝑛𝑑 𝑃 be the independent variables . 

The enthalpy is  ℎ ≡ 𝑢 + 𝑃 𝑣 thus, 
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With 𝑠 = 𝑠(𝑇, 𝑃), we have

𝒅𝒔 = (
𝝏𝒔

𝝏𝑻
)𝑷𝒅𝑻 + (

𝝏𝒔

𝝏𝑷
)𝑻𝒅𝑷

Since 𝑇 𝑎𝑛𝑑 𝑃 are independent, it follows that

(
𝝏𝒔

𝝏𝑻
)𝑷 =

𝟏

𝑻
(
𝝏𝒉

𝝏𝑻
)𝑷 (

𝝏𝒔

𝝏𝑻
)𝑻 =

𝟏

𝑻
[(
𝝏𝒉

𝝏𝑷
)𝑻 − 𝒗]

𝑎𝑛𝑑

7.5 The Tds Equations
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The differential 𝑑𝑠 is exact. Therefore,  

[
𝝏

𝝏𝑷
(
𝝏𝒔

𝝏𝑻
)𝑷]𝑻=

𝝏𝟐𝒔

𝝏𝑷𝝏𝑻
=

𝝏𝟐𝒔

𝝏𝑻𝝏𝑷
= [

𝝏

𝝏𝑷
(
𝝏𝒔

𝝏𝑻
)𝑻]𝑷

𝟏

𝑻

𝝏𝟐𝒉

𝝏𝑷𝝏𝑻
=
𝟏

𝑻
[
𝝏𝟐𝒉

𝝏𝑻𝝏𝑷
− (

𝝏𝒗

𝝏𝑻
)𝑷 ] −

𝟏

𝑻𝟐
[(
𝝏𝒉

𝝏𝑷
)𝑻 − 𝒗]

Substituting last two Equations from previous slide, we get  

↔ (
𝝏𝒉

𝝏𝑷
)𝑻 = −𝑻 (

𝝏𝒗

𝝏𝑻
)𝑷 + 𝒗

7.5 The Tds Equations
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For a reversible process, (𝜕ℎ/𝜕𝑇)𝑃 = 𝑐𝑃

𝑻𝒅𝒔 = 𝒄𝑷𝒅𝑻 − 𝑻 (
𝝏𝒗

𝝏𝑷
)𝑷 𝒅𝑷

Finally, since (𝜕𝑣/𝜕𝑇)𝑃= 𝑣𝛽, we have

𝑻𝒅𝒔 = 𝒄𝑷𝒅𝑻 − 𝑻 𝒗𝜷𝒅𝑷

7.5 The Tds Equations


