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CH. 8
DEFLECTTONS DUE TO BENDING
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8.1 Introduction

1) We consider the deflections of slender members which transmit
bending moments.

i1) We shall treat statically indeterminate beams which require
simultaneous consideration of all three of the steps (2.1).

111) We study mechanisms of plastic collapse for statically indeterminate
beams.

iv) The calculation of the deflections is very important way to analyze
statically indeterminate beams and confirm whether the deflections
exceed the maximum allowance or not.

8.2 The Moment — Curvature Relation

» From Ch.7

= When a symmetrical, linearly elastic beam element is subjected to
pure bending, as shown in Fig. 8.1, the curvature of the neutral axis
is related to the applied bending moment by the equation.

1 ymle_40_Mp _Mp (8.1)

p  As—»0As ds  El,, EI

¢f. For simplification, I,, = I
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Fig. 8.1 Deformation of an element of a beam subjected to bending moments M,

» Simplification

1) Assume that the shear forces which necessarily accompany a varying
bending moment do not contribute significantly to the overall
deformation.

1) Accordingly, although My, is not a constant, the expressions defined
from pure bending can be applied.
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(b)

Geometry of the neutral axis of a beam bent in the xy plane

P Differential equations between the curvature and the deflection

dv

= tan ¢

d (dv d
—|—=) =—=(tan
das (dx) das ( ¢)
d?v dx
dx2ds
d¢ _ d?vdx 2
- — = ——(C0S
ds dx? ds ¢

From Fig. 8.2 (b)
(ds)? = (dx)? + (dv)?

- () =1+ ()

1> The case of the large deflection
The s/ope of the neutral axis in Fig. 8.2 (a) is

_ 2 p d¢
sec qbds

Next, differentiation with respect to arc length s gives

(a)
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dx 2 1
> (%) =@ (b)
dx 1
& cosp=30= [1+(dv/dx)?]1/2 ©)

If substituting (b) and (¢) into the (a),

dgp _ d?v/dx? _ v’ _
ds  [+@v/d0?2 - [eehzpr K (8.2)
v _ ﬂ

[1+(wN2]3/2  EI

¢/ When the slope angle ¢ shown in Fig. 8.2 is small, then dv/dx
is small compared to unity. If we neglect (dv/dx)? in the
denominator of the right-hand term of (8.2), we obtain a simple
approximation for the curvature

— N —

ds ~ dx? ~ EI (8.3), (8-4)

—> There is less than a 1 percent error involved in the approximation
(8.3) to the exact curvature expression (8.2) when ¢ < 4.7°.

2> The case of the small deflection

The slope of the neutral axis in Fig. 8.2 (a) is

dv
= tang

When the deflection is very small,
ds = dx, tan¢ = ¢

d d d (dv d?v
D=l () e 8.3
ds dx dx \dx dx?
1 d d’v M
k=1=%_4v_M (8.4)
p ds dx? EI
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» Comment on Eq.(8.4)

2

1) This is essentially a linear “force-deformation” or “stress-strain”
relation. M, = EI %

11) El is called the flexural rigidity or the bending modulus.

111) The sign convention of the M} and the curvature are same as what we
discussed in chapter 3.

P The solution of the deflection-curvature
1) Integration of the moment-curvature relation
11) Method of the singularity functions
111) Moment-area method
1v) Superposition technique
v) Load-deflection differential equation

vi) Elastic energy method

8.3 Integration of the moment-curvature relation

P Differential equation of deflection-curvature in case of the linear elastic
materials and very small deflection.

d?v d3v d*v
EIE_Mb: EIE——V, Elw—q
L=v'> EW'=M, , EW"=-V, EW"=gq
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» Example 8.1

Determine the deflection curvature of the deformed neutral axis in simple
beam shown in Fig. 8.3
Sol)

(b)

Fig.8.3 Example 8.1. Simply supported beam (a) before and (b) after application of a
concentrated load W

M, =WTbx—W(x—a)'

A B
a —~— b
Ra=w2 TW Rg=w2
(a)

P
=

M @ x—ad]

b
wi Yw
(b)

Fig.8.4 Example 8.1. Free-body diagram of beam and segment of beam

Ch. 8 Deflections due to bending 7/28



M2794.001000 (Solid Mechanics) Professor Youn, Byeng Dong

—> Using the singularity functions and bracket notation introduced in Sec
3.6, we can write a single expression for the bending moment M,

directly from the free body of Fig. 8 4b.
Wb

Elv" =My = =-x = W(x—a)! @

Elv = WTbx; ~wEL L cx e, <
B.C) v(0) =v(L) =0

v(0) = 0; 0=1c

v(L) = 0; OZ%LS_WTMjLClL

_>C1:2/_Lb(b2—L2)' =0

~. From eq.(c)

v= W[ - p2 x4 (- o)

F (Bemo = W)ymo = —1op

To give some idea of order of magnitudes, let us consider the following
particular case:

L=370 m, a=b=185m

W=18 kN, E=11 GN/m?, [=3.33(10)7 mm*
Then, the maximum deflection and slope is

B _owid 1800 (3.70)3
(V) max = (v)x=L/2 "~ 48EI  48(11x109)(3.33x1075)
= —5.19(10)"3 m = —5.19 mm
2
Pmax = v'(0) = v'(L) = ——— = —0.00420 rad = —0.2409°
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» Example 8.2
Determine the deflection § and the slope angle ¢ of the beam in Fig.8.5

g

7

| "

——
(=
e

7 P 5=EL

(b)

(c) — ' */ 3El
S o
™ 2EI
]
% o= -AZ%L:;
(d) gy /

-
M . El

Fig. 8.5 Example 8.2. Cantilever beam with force and moment load
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In order to obtain the bending moment in the interior of the beam, we
isolate the segment of length L - x shown m Fig. 8.5 (b). From this free
body we obtain the bending moment
Mb:—P(L—X)—M (a)
Inserting (a) into the moment-curvature relation (8.4), we find the
differential equation for the beam displacement v(x).
d?v
Elﬁ——PL+Px—M (b)
2
Elv' = —PLx + P "7 — Mx + ¢, (d)
x? x3 x?
EIv=—PL?+P?—M?+c1x+c2 (e)
B.C) v'(0)=0 , ©v(0)=0
C1 =C = 0
I x?
v=-=|PE@EL-x) +MZ] ()
3 2
§=-v(l) ==+
3EI  2EI
N
¢ =—-v'(L) RETTRET
¢f. Figure 8.5 (¢) shows the case where the moment M = 0.
¢f. Figure 8.5 (d) shows the case where the moment P = 0.
» Example 8.3
Determine the deflection 6 of the beam in Fig.8.6
Sol)
"o . b w{x—a)?
Elv —Mb—wbx—wb(a+5)— 5 (a)
2 —q\3
EIv’=be7—Wb(a+§)x—W<x 9 +c (b)
3 b 2 ( _ )4-
EIv=wb%—wb(a+E)x7—sz4a +c1x + ¢y (©)
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T-’Va b
)

A I
7/’"A B N o e
(a) C i

e —
MA=wb(a+g)([

(b) TRA = wb
a ——r-x;a*l
wba + 2) (r r@}s "

(c) wa
AN

Example 8.3

B.C) v(0))=0, ©v(0)=0
cp=¢, =0

3 Zb bZ b3
6=—v(a+b)=‘g—f(a—+3a +a—+—)

3 4 2 8
¢f. When a = 0;

wb*

8E]
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» Example 8.4

Draw the B.M.D in Fig.8.7, statically indeterminate beam
v

) ‘%{P:::{‘) My

RN Example 8.4

The conditions of equilibrium applied to Fig. 8.7¢ yield

Elv" = My = Ryx — P(x — a)! ()
2 _A\2
Elv' =R, % - P&t (b)
3 —_~\3
EIv=RAx?—P<x6a> +c1x +c, (©)
B.C) v(0) =v(L) =v'(L) =0
v(0) = 0;
0 - C2
v'(L) = 0;
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0=Ry 2 -PE% 4

R Cl:PTbZ_RZLZ

v(L) =0,
o_RAL—z—P”—:+P”Zﬁ—R";L
“ Ry =22 (3L~ b)

¢/ By equating the magnitudes given in Fig. 8.8, we find that the bending
moments at B and at C have equal magnitude when a = (\/7 — l)L =
0.414L.
{a <0414 L -  (Mp)max at B
a> 0414 L - (Mp)max at C
A

b o e e e

_Pb?a
s (3L=b)

M,,T 0 L Y -~ ([ +Ms |)
S 1 T

212

Fig.8.8 Example 8.4. Bending-moment diagram for the beam of Fig. 8.7

» Example 8.5

A long uniform rod of length L, weight w per unit length, and bending
modulus E1 1s placed on a rigid horizontal table. Determine the length 6 in
Fig.8.9 which lifts up from the table.
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(a) >

(b)

(c)

(d)

(e)

(f) — ~mma— 3
t1 1118 X

w |Rg D
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(9) =
Rezwﬁz#z RC=W

S A

Fig. 8.9 Example 8.5. Beam overhanging edge of the table causes segment BC to lift up from
the table

P Verbal analysis

1) The curvature of the beam is 0 in the region AB. > .. Between A
and B, M, =0
i1) In section AB, V = 0. > .. Net load intensity is 0

i11) From Fig (d), M, is positive. . The positive curvature is needed

in order that the beam is detached from the table.

iv) From Fig (e), the reaction force Ry should exist which offsets the
bending moment in order to satisfy the equilibrium.

v) The deflection and the slope angle are 0 at the point B since the
deformation should be continuous.

vi) The bending moment at the point B is 0 but the shear force appears
suddenly.

P Formulated analysis

1) it 1s convenient to deal only with the segment of the beam between
B and D.
i1) We obtain M, from the free body of Fig. 8.9g and insert in (8.4).
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"o _(p?-a?) (b+a)®>, o\ x°
Elv" =My =w———x+w— (x — b) w= (a)
p_wb?=a?) 5  wh+a)?, o, wx?
Elv' = — X+ —— (x — b) — (b)
2_ A2 2 4
Elvzw(blTba)x:“+%(x—b)3—%+clx+cz (c)

B.C.) v(0) =v(b) =v'(0) =0
ct=¢c=0 - vb)=0

. w(?-a?) 3 _ wb*
~ 0= 12b b*+0 24
- b=+2a

8.4 Superposition

- The method is based on linear relation between the load and the
deflection.

P The linearity is based on the followings.

N : : d M
1) Linearity between the bending moment and the curvature.d—f = E—;’
cen oy i i d¢p  dv?

i1) Linearity between the curvature and the deflection. — ~ o3

—> This expression can be applied only when the load-deflection is
linear and the deformation is infinitesimal.

» Using superposition to obtain the solution to a beam-deflection problem
we again are using the three steps in Eq. (2.1) and nothing additional;
Equilibrium, geometric compatibility and the force-deformation relation.
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Table 8.1 Deflection formulas for uniform beams

3 is positive downward

Ch. 8 Deflections due to bending

P
—_ —_— —_ 3 x3 2
o 6El((.w: a)® — x* 4 3x3a)

wyx?

- 24 6L2 —4L
g1 & TOL *)

P Pb E — 3 3 Do ]
S—GTE_I[b<x a>? —x*+(L* —b¥)x

8= 2X (13 _ L2 4 x3
24EI(L 2Lx? - x?)

¢ﬂat -

¢mu

¢mn

$: =

$: =

Pa?
2EI

w,L?

6EI

M,L
El

Pab(2L — a)
6LEI
Pab(2L — b)
6LEI

s Pa*(3L — a)
max 6El
w,L*
Sl’ll! - 8£1
e = 2L
™Y 2EI
PH(L? — b?)*
Tt ot .
93 LEI
atx = J Ly
a 3
5 = Sw,L*
™ 384ET
M,L?
3EI
at X = =
17/28
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» Example 8.7
Draw the B.M.D.

TR AV Example 8.7
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» Assumptions

1) There is no stress in the beam when P = 0.

i1) Although the shear force P is applied on the beam, the deflection is

infinitesimal sufficiently. Thus the effect of the axial stress on the
bending can be ignored.

¢/ This beam is statically indeterminate since there are four

unknowns,Ry Rc M, Mc,but two equilibrium equations, ), F, =
0,>M=0.

le— g b —
MbT 2Pa%h?| I
L3
(a) 0
Pab? —
L2 |

s xY

_ Pa‘b
L -

o
——
xY

(b)

0

xY

M T 0
(@ | pa2b
L2

xY

R AEN  Example 8.7. Superposition of bending-moment diagrams
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P Analysis
Superposition of the three loadings of Fig. 8.12(b), (c¢), and (d) gives
the loading of Fig. 8.12(a). Zero slope and zero displacement
conditions at C lead to
6, —06,+63=0
{ 1702 + 03 iy (a)
b1 — P2 + @3
From the Table 8.1, we find
(¢ _ Pa*(3L-a) _ Pa?
01 = 6EI ’ b1 = 2EI
R:L3 __ R.L?
<52_3151 ’ ¢2_2E1
M,L? ML
\63_2131 ’ b3 =7
Pa3(3L-2a)
Pa3(L-a)
M, 7
Pab?
MA = 12

» Example 8.8
Determine the 6y and 6y at the point D.
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Pin

—

25 mm diameter stee| rod
(Area = 491 mm?)

s S CCCRRNRNRY,

/"s
Steel beam
’'4

75 mm

NA

L

Area = 3200 mm?
l,, =10 x 108 mm?*

ST NEN Example 8.8
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Sol)

» Idealization
1) The bolt-joint is completely effective in clamping the beam at C.
i1) The axial compressive force of the beam doesn’t affect the bending.
¢/ In case of ii), we next consider the case that the axial compressive
force affect the bending.

e D
. X =
Mc = (P-X)L TRC = pP-X l
(b) P

, o

N _“22 D /‘\580
b
6V 45° D1

DD
1 J_
DA‘ 91] Sy b
(c) (d)

SR NN Example 8.8. Force analysis and geometric analysis for a model based on
clamping assumption at C

» Analysis
From Fig. 8.15(d),

Sy = 8cp +V28pp (a)
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From Fig. 8.15(b),
Spp = V2X V2L = 2XL

FA FA (b). (©)
Sep = XL
EAcp
From Table 8.1 — Case 1,
_(P-x)L3
Oy = —_ (d)

Insert (b), (¢), and (d) into the compatibility relation (a) :
P

X = 1+31/(AcpL?)+6v21/(AgpL?) (€)

20

- 14+0.0014+0.0192 =19.60 kN ()

<6H = 0.090 mm
5, = 1.760 mm 2)

p Effect of the compressive force on the bending.

P-X =040 kN
oy =176 mm

X=19,60 kN

TR AN  Example 8.8. Estimation of interaction between compression and bending

Mc(Due to Compressive Load) _ ., by
M (Due to Transverse Load) - (P-X)L
= 19.60 2272 = 0.02875
0.4 (3)
=29 %

~ The bending from compressive load can be ignored.
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» Comparison of peak stress between the pin joint and clamping.

040 kN )
19.60 kN % :
'C—-—- -150 mm 61_%";_09__
1.20 KN-m ¥ D IO
7/ .17 /T .
T 19.60 kN

(a) (b)

R AWE Example 8.8. Reactions at C shown as a statically equivalent, single force resultant

1) ocp atthe pin joint

. 20.00 . 2
— Ocp = —3'2 (10)-3 = 6.25 MN/m

1) ocp atthe clamping

1960 (1.20)(0.075) _ 2
— 9cp T 330003 AT (10)-6 1512 MN/m

» The peak stress can be main factor of local deformation in the

slender member.

p Truss

—> If the joints are pinned, the structure is called a truss

» Frame

—> If the joints are rigid, the structure is called a frame.

¢f. The structure in Fig. 8.15 is the one example of the mixed structure.

8.5 Load-Deflection Differential Equation

—> As an alternative to using the moment-curvature equation (8.4) to solve
beam-deflection problems, we can make use of an equation which
directly relates the external loading to the beam deflection.
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P Load-deflection differential equation

From chapter 3,

av
—taq= 0 (3.11)
dMp _
24V =0 (3.12)
dsz .
2 = (8.5)
d? d?v 27
- L (EI de) = Elv'"" =g (8.6)
d d?v o
& E(E’ E) = Elv'" = -V (8.7)
P Summary
Elv'" = M, (8.4)
Elv'"' = -V (8.7)
Elv''" =q (8.6)
e
7
— I fvx) . -
Z v=0 X X
av_p

SR NN Built-in or clamped end Jal-:ZAM Simply supported end

Ch. 8 Deflections due to bending 25/28



M2794.001000 (Solid Mechanics) Professor Youn, Byeng Dong

y,v
ZOT y,Vv
=2
é | TV(X) > | _——— T
) %o == X
% X o V=0
N Mb=0

YA End restrained against rotation g
but free to displace Fig. 8.22 uylyl)

¢/ The Fig. 8.19, 8.20, 8.21, and 8.22 represent the support condition at the
support point.

P Problem solving process

1) Set up the loading intensity equation q(x). It’s efficient to use
singularity functions.

i1) Integrate the governing equation and find the four constants of

integration.

111) This procedure is available regardless of whether it is determinate or

not.

¢f. According to ‘Timoshenko & Gere’, the constant of integration is always
zero if the governing equation q(x) contains all reaction forces.
However, in ‘Crandall’ it can have non zero value, and actually it is true.

See the example 3.9.
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» Example 8.9

Determine the deflection at the point B in offset arm. Ignore the weight.
Sol)

q= " =LY - W= 1)3)

;//AA - B - D%

%

A e e T
. >
%RA l I{/A
(b) w

SR WEN  Example 8.9. Offset loading is equivalent to a force and a couple at B

The load intensity function g for 0 < x < L is
WL
q= ?(x —L/3)_, —W({x—L/3)4 (a)
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B.C.)
v(0)=v(L)=0

(b)
v'(0)=v'(L) =0

Insertion of (a) into the load-deflection differential equation (8.6) yields
EI——W[ <x—L/3> ,-<x—LJ3>_ ] ©)

Expressions for dv/dx and v are obtained by integrating (c).

d w ( L/3>2

dZ—El[ (x — L/3) — ad + 1—+c2x+c3] (d)
( L/3> 2

vza[g(x—L/B)z x—+ C1 +c2x +c3x+c4] (e)

Substitution of (d) and (c¢) into the boundary conditions (b) gives four
simultaneous equations for the constants of integration. Their solution is

8 4
1= ,CZZ_ZL, C3:O, C4:O (f)

27

Inserting these in (¢) we find

Lix = L/3)? = 2(x — L/3)* + 23 2Lx2] (2)

© 27EI [

We obtain the desired deflection by setting x = L/3
14WL3
2,187EI

(h)

B = _(U)sz/s =
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