Convex optimization Nonlinear Programs

By a convex optimization (&3] 4 3}) we mean an optimization problem
of minimizing a convex function or maximizing a concave function over a
convex set. A typical form of convex optimzation is

min convex f(z) or max concave f(x)
s.t. convex g;(z) <0, or
concave g;(z) >0, i=1,...,m,
affine hj(z) = ]:1,...,

(8.13)
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Why convex optimization? Convex optimization Nonlinear Programs

@ The computational efforts for solving an optimization problem vary
significantly depending on the characteristics of the functions in the
objective or constraints. A general nonlinear program may require an
astronomical scale of time and memory to obtain an optimal solution.

@ A convex optimization is easy to solve, polynomially solvable.
“In fact the great watershed in optimization isn't between linearity
and nonlinearity, but convexity and nonconvexity.” - Rockafellar

@ Prevalent! Many real problems can be formulated as a convex
optimization problem such as LP, QP, SDP, etc. It is important to
recognize if the given problem can be formulated or approximated by
a convex optimization problem.
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Why convex optimization? Convex optimization Nonlinear Programs

Theorem 8.5

Any local optimal solution of a convex optimization problem is optimal.

Proof: Let = be a local optimal solution: there is ¢ > 0 such that f(x) < f(2),
Vz € B.(z) N S. Assume on the contrary that there is y € S: f(x) > f(y). On
the line segment connecting = and y, there is z € Bc(x). Let the corresponding
coefficient be \: 2z =z + Ay —z) = (1 — Nz + A\y.

S

¥ = (1= A x4+ 13 v
. .
o

(8.14)
A contradiction. [
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One-dimensionality of convexity Convex optimization Nonlinear Programs

If a function f: R™ — R is convex, then its restriction on any line is also a
(one-dimensional) convex function. Conversely, if the restriction of a function to
any line is convex, the function is convex on R™. See the figure below.

\_\ gld)= fix+A{y—x))
~
SUEE
b N
X '\q i

x4+ A(y=x)
—

It means to show the convexity of f, it suffices to show that for any points x, y of
R"™, g(A\) = f(x + Ay — x)) is convex function in \.
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First-order condition of convexity Nonlinear Programs

Consider a differentiable function f: R" — R.

Theorem 9.1
If f is convex, then

f) > f(@)+ V@) (y— z) Yo,y € R™. (9.15)

The converse is also true.

Proof (=) Take any points z, y € R™. Since f is convex, for 0 < A < 1,
fl@+ My —2)) <A = XNf(x) + Af(y). or

fla+ Ay —x)) — f(z)
X :

fly) > f(z) +

If we let g(\) = f(z + A(y —x)), the last term is equal to w which
converges to ¢'(0) as A — 0. But ¢/(0) = VT f(x)(y — x) and hence
(9.15) follows. O
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Second-order condition of convexity Nonlinear Programs

Proposition 10.1

A twice-differentiable function f : R — R is convex if and only if
f(x) >0V z.

Proof (=) Since f is convex, the first-order condition implies for all z, y
with z < y fly) > f(z) + f'(x)(y — =), or (; . @) > #(z). Similarly,
f'y) > fo)=r) f(x) Hence f’ is monotone increasing and thus f”(z) > 0.
(<) By Taylor s theorem, for any two points < y, thereisz < z <y
such that f(y) = f(z) + f'(z)(y — =) + 3f"(2)(y — 2)*. By the
assumption, it implies f(y) > f(z) + f'(z)(y — ). By the first-order
condition of convexity, f is convex. O
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Second-order condition of convexity Nonlinear Programs

For the case f: R" — R, consider any = and y € R", and g(\) :=
f(z+ Ay —=x)). Then

9"V = (y—2)"V?f(z + My —2))(y — z) > 0. (10.16)
Since = and y are arbitrary, it implies that for any x € R", we have
IV f(x)z > 0,Vz (10.17)
Definition 10.2

A symmetric matrix @ is said to be positive semidefinite (PSD) if
2T'Qz > 0 for every z.

Proposition 10.3

A twice-differentiable function f : R™ — R is convex if and only if its
Hessian V2 f(z) is PSD.
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Second-order condition of convexity Nonlinear Programs

Exercise 10.4

@ Prove the function are convex: f(z) =c+d 'z, f(z) = c+d'z + 327 Qux
where Q) is PSD.

@ Negative entropy f(z) = xlogx defined on Ry is convex.
o f(z,y) =z* + 2%y? is convex on {(x,y) € R?|z <y < 0}.

@ Sketch the graphs of f(x) = 110771\ and f(z) = |z| — In(1 + |z|) and find the

range on which each f is convex.
@ Exponential e*® a € R is convex.

@ z“ defined on R is convex if either a > 1 or a < 0, and concave if
0<a<l.

e Ifp>1, |z|P is convex.

@ logx is concave on R, .
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Feasible direction theorem Nonlinear Programs

Theorem 11.1

Feasible direction theorem (753 7 2]) Let f be a differentiable
convex function defined on a convex set FF C R™. A point x € F' is a
minimizer of f over F' if and only if for every feasible direction y of x,
Vf(z)Ty >0.

Proof: The necessity follows from Proposition 4.2 (irrespective of
convexity).

For sufficiency, take any point z € F such that z # x. By the first order
condition of convexity, f(z) > f(x) + Vf(x)T(z — x). Since F is convex,
y — x is a feasible direction, the assumption implies V f(x)T(z —x) > 0
and f(z) > f(x). Hence, x is optimal. O
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Feasible direction theorem Nonlinear Programs

Corrolary 11.2

An interior solution x of a convex optimization is optimal if and only if
Vf(x)=0.

A point z satisfying V f(x) = 0 is called a stationary point) of f.
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Application 1 - Least square method Feasible direction theorem Nonlinear Programs

In case a linear equality system Ax = b has no solution, we may pursue a
point z whose error is minimized. An error can be defined naturally by
using 2-norm || - ||2. Then the problem is an optimization problem.

min ||Az — bl|2. (11.18)

(11.18) is the problem of finding a point b* in the column space of A
which is closest to b. b* is called the projection of b onto the row space of

A. An optimal solution z7, ..., 2 of (11.18) is the coefficients in a linear
combination of A.q, ..., A., representing b*.
b
= A,
xAql
_ o
.}:-2';7}:-,;»-..________:5 A,
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Application 1 - Least square method Feasible direction theorem Nonlinear Programs

Since ||Az — b||3 = (Az — b)T (Az —b) = 2T AT Az — 20T Ax +bT'b, (11.18)
can be formulated as the unconstrained problem minimizing the quadratic
function f(z) = 2T AT Az — 207 Az + b7'b Since V2f(z) = AT A is PSD

matrix (why?), the problem is an unconstrained convex optimization.

Optimal solutions are attained at a stationary point:
24T Az — 24T = 0. (11.19)

Therefore optimal solutions are exactly the solutions of (11.19). If the
columns of A are linearly independent, AT A is invertible, and the solution
is unique, x* = (AT A)~tATp,

b* = A(ATA)~1ATh.

We call A(ATA)~1 AT the projection matrix onto the column space of A.
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Application 1 - Least square method Feasible direction theorem Nonlinear Programs

The least-square method is used to compute regression coefficients. Suppose we
have observed the values of independent variables = and dependent variables y as
follows.

zI|| 1 2 3
y [18 3 42

For a linear regression model y(z) = ax + b, the differences between prediction
and observation are

y(1) —1.8=a+b— 1.8 for x =1,
y(2) —3=2a + b — 3 for x = 2, and
y(3) —4.2=3a 4+ b — 4.2 for x = 3.
Our problem is to find the coefficients a and b minimizing the error in 2-norm,

[ a ] 1.8
= 3
b 4.2

2

1
1
1

=
=
W N =

2
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Application 1 - Least square method Feasible direction theorem Nonlinear Programs

Then

The obtained linear model is y = 1.2z + 0.7.

¥

1 2 3
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Application 1 - Least square method Feasible direction theorem Nonlinear Programs

Exercise 11.3

Suppose we have observed the values of independent and dependent
variables as follows:

x| 1 2 3 4
yI| 3 13 20 38

We have chosen a quadratic regression model y(x) = ax? + c¢. Compute a
2-norm error minimizing regression coefficients a and c.
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Application 1 - Least square method Feasible direction theorem Nonlinear Programs

Repeat the problems using the following norms instead of 2-norm || - ||2.
]l oo = max {|z1], |2, -, |zal}, (11.20)
[zlly = |z1| + |z2| + -+ + |20l (11.21)
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Sufficiency of KKT conditions Nonlinear Programs

Proposition 12.1

A feasible solution =* of a convex optimization min{ f(z) : g(z) = (g1(z), ...,
gm(x)) > 0} is optimal if there is \* satisfying

Vi(z*) = 3521 A Vgi(a*) =0,
AT >0, (KKT conditions)
Ar=0,Vi ¢ A(z®) ( & (AM)Tglar) = 0)~

Proof For each A, we consider the function in = defined by L(z; \) = f(z) —
Tg(x) (called Lagrangian (2}=23}%] S})) Since g;'s are concave in  and A > 0,
( A) is convex in x. Since x* is a stationary point by the first condition,
L(x; \*) is minimized at x = z*. In particular, for every feasible solution z,

L(z* ) = f(@") = (A)Tg(z") < f(z) — (A)"g(2) < f(2). (12.22)

The last inequality follows from A* > 0 and g(x) > 0. The third condition,
(A)Tg(x*) = 0 implies f(z*) = L(z*; \*), and therefore (12.22) implies f(z*)
< flz)VzeF.O
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Application 2 - Hyperplane classifier Sufficiency of KKT conditions Nonlinear Programs

Hyperplane classifier
Given two sets {u;|i € U} and {v;|i € V'}, find a hyperplane (w,b) that separates
two sets by a ‘maximum’ margin.

Suppose the supporting hyperplanes are w”z = b —t and w”x = b+ ¢, and the

support vectors are u € U, v € V. Then the margin is (v — u)Tﬁ = 2le\
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Application 2 - Hyperplane classifier Sufficiency of KKT conditions Nonlinear Programs

If we assume ¢ > 0, then the problem of finding hyperplane with a largest margin
becomes a QP:

|w
max jllw\b (< min | H2)
st u;w— >+4t, 1€ U,
viTw — b <-—t, 1€V,
& min  |lw|3
st. wfw—-b >+1,i€eU,
vJw—b >-1,i€V.

For a general case when two sets U and V' are not separable by a hyperplane, we
can allow error &; > 0 for each i and add a total error penalty to the objective
function:
min  Jlw[ +732; &
s.t. ulTw—b>+1—§z, iel,
vw—-b< -1+¢, i€V,
gz >0, 1 E []7 V.
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