
Convex optimization Nonlinear Programs

By a convex optimization (�̂¦2�¤þj&h��o) we mean an optimization problem
of minimizing a convex function or maximizing a concave function over a
convex set. A typical form of convex optimzation is

min convex f(x) or max concave f(x)
s.t. convex gi(x) ≤ 0, or

concave gi(x) ≥ 0, i = 1, . . . ,m,
affine hj(x) = 0, j = 1, . . . , p.

(8.13)
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Why convex optimization? Convex optimization Nonlinear Programs

The computational efforts for solving an optimization problem vary
significantly depending on the characteristics of the functions in the
objective or constraints. A general nonlinear program may require an
astronomical scale of time and memory to obtain an optimal solution.

A convex optimization is easy to solve, polynomially solvable.
“In fact the great watershed in optimization isn’t between linearity
and nonlinearity, but convexity and nonconvexity.” - Rockafellar

Prevalent! Many real problems can be formulated as a convex
optimization problem such as LP, QP, SDP, etc. It is important to
recognize if the given problem can be formulated or approximated by
a convex optimization problem.
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Why convex optimization? Convex optimization Nonlinear Programs

Theorem 8.5

Any local optimal solution of a convex optimization problem is optimal.

Proof: Let x be a local optimal solution: there is ε > 0 such that f(x) ≤ f(z),
∀z ∈ Bε(x) ∩ S. Assume on the contrary that there is y ∈ S: f(x) > f(y). On
the line segment connecting x and y, there is z ∈ Bε(x). Let the corresponding
coefficient be λ̄: z = x + λ̄(y − x) = (1− λ̄)x + λ̄y.

Then

f(z) = f((1− λ̄)x + λ̄y) ≤ (1− λ̄)f(x) + λ̄f(y) (from convexity of f)
< (1− λ̄)f(x) + λ̄f(x) (assumption f(y) < f(x)) = f(x).

(8.14)

A contradiction.
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One-dimensionality of convexity Convex optimization Nonlinear Programs

If a function f : Rn → R is convex, then its restriction on any line is also a
(one-dimensional) convex function. Conversely, if the restriction of a function to
any line is convex, the function is convex on Rn. See the figure below.

It means to show the convexity of f , it suffices to show that for any points x, y of
Rn, g(λ) = f(x + λ(y − x)) is convex function in λ.
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First-order condition of convexity Nonlinear Programs

Consider a differentiable function f : Rn → R.

Theorem 9.1

If f is convex, then

f(y) ≥ f(x) +∇f(x)T (y − x) ∀x, y ∈ Rn. (9.15)

The converse is also true.

Proof (⇒) Take any points x, y ∈ Rn. Since f is convex, for 0 < λ < 1,
f(x + λ(y − x)) ≤ (1 − λ)f(x) + λf(y), or

f(y) ≥ f(x) +
f(x + λ(y − x))− f(x)

λ
.

If we let g(λ) = f(x + λ(y− x)), the last term is equal to g(λ)−g(0)
λ−0 which

converges to g′(0) as λ→ 0. But g′(0) = ∇T f(x)(y − x) and hence
(9.15) follows.
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Second-order condition of convexity Nonlinear Programs

Proposition 10.1

A twice-differentiable function f : R→ R is convex if and only if
f ′′(x) ≥ 0 ∀ x.

Proof (⇒) Since f is convex, the first-order condition implies for all x, y

with x < y, f(y) ≥ f(x) + f ′(x)(y − x), or f(y)−f(x)
y−x ≥ f ′(x). Similarly,

f ′(y) ≥ f(y)−f(x)
y−x . Hence f ′ is monotone increasing and thus f ′′(x) ≥ 0.

(⇐) By Taylor’s theorem, for any two points x < y, there is x ≤ z ≤ y
such that f(y) = f(x) + f ′(x)(y − x) + 1

2f ′′(z)(y − x)2. By the
assumption, it implies f(y) ≥ f(x) + f ′(x)(y − x). By the first-order
condition of convexity, f is convex.
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Second-order condition of convexity Nonlinear Programs

For the case f : Rn → R, consider any x and y ∈ Rn, and g(λ) :=
f(x + λ(y − x)). Then

g′′(λ) = (y − x)T∇2f(x + λ(y − x))(y − x) ≥ 0. (10.16)

Since x and y are arbitrary, it implies that for any x ∈ Rn, we have

zT∇2f(x)z ≥ 0,∀z (10.17)

Definition 10.2

A symmetric matrix Q is said to be positive semidefinite (PSD) if
zT Qz ≥ 0 for every z.

Proposition 10.3

A twice-differentiable function f : Rn → R is convex if and only if its
Hessian ∇2f(x) is PSD.
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Second-order condition of convexity Nonlinear Programs

Exercise 10.4

Prove the function are convex: f(x) = c + dT x, f(x) = c + dT x + 1
2xT Qx

where Q is PSD.

Negative entropy f(x) = x log x defined on R++ is convex.

f(x, y) = x4 + x2y2 is convex on
{
(x, y) ∈ R2|x ≤ y ≤ 0

}
.

Sketch the graphs of f(x) = x2

1−|x| and f(x) = |x| − ln(1 + |x|) and find the

range on which each f is convex.

Exponential eax a ∈ R is convex.

xa defined on R++ is convex if either a ≥ 1 or a ≤ 0, and concave if
0 ≤ a ≤ 1.

If p ≥ 1, |x|p is convex.

log x is concave on R++.
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Feasible direction theorem Nonlinear Programs

Theorem 11.1

Feasible direction theorem(��0px~½Ó�¾Ó &ñ
o�) Let f be a differentiable
convex function defined on a convex set F ⊆ Rn. A point x ∈ F is a
minimizer of f over F if and only if for every feasible direction y of x,
∇f(x)T y ≥ 0.

Proof: The necessity follows from Proposition 4.2 (irrespective of
convexity).

For sufficiency, take any point z ∈ F such that z 6= x. By the first order
condition of convexity, f(z) ≥ f(x) + ∇f(x)T (z − x). Since F is convex,
y − x is a feasible direction, the assumption implies ∇f(x)T (z − x) ≥ 0
and f(z) ≥ f(x). Hence, x is optimal.
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Feasible direction theorem Nonlinear Programs

Corrolary 11.2

An interior solution x of a convex optimization is optimal if and only if
∇f(x) = 0.

A point x satisfying ∇f(x) = 0 is called a stationary point) of f .
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Application 1 - Least square method Feasible direction theorem Nonlinear Programs

In case a linear equality system Ax = b has no solution, we may pursue a
point x whose error is minimized. An error can be defined naturally by
using 2-norm ‖ · ‖2. Then the problem is an optimization problem.

min ‖Ax− b‖2. (11.18)

(11.18) is the problem of finding a point b∗ in the column space of A
which is closest to b. b∗ is called the projection of b onto the row space of
A. An optimal solution x∗

1, . . ., x∗
n of (11.18) is the coefficients in a linear

combination of A·1, . . ., A·n representing b∗.
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Application 1 - Least square method Feasible direction theorem Nonlinear Programs

Since ‖Ax− b‖22 = (Ax− b)T (Ax− b) = xT AT Ax−2bT Ax+ bT b, (11.18)
can be formulated as the unconstrained problem minimizing the quadratic
function f(x) = xT AT Ax − 2bT Ax + bT b Since ∇2f(x) = AT A is PSD
matrix (why?), the problem is an unconstrained convex optimization.

Optimal solutions are attained at a stationary point:

2AT Ax− 2AT b = 0. (11.19)

Therefore optimal solutions are exactly the solutions of (11.19). If the
columns of A are linearly independent, AT A is invertible, and the solution
is unique, x∗ = (AT A)−1AT b,

b∗ = A(AT A)−1AT b.

We call A(AT A)−1AT the projection matrix onto the column space of A.
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Application 1 - Least square method Feasible direction theorem Nonlinear Programs

The least-square method is used to compute regression coefficients. Suppose we
have observed the values of independent variables x and dependent variables y as
follows.

x 1 2 3
y 1.8 3 4.2

For a linear regression model y(x) = ax + b, the differences between prediction
and observation are

y(1)− 1.8=a + b− 1.8 for x = 1,
y(2)− 3=2a + b− 3 for x = 2, and
y(3)− 4.2=3a + b− 4.2 for x = 3.

Our problem is to find the coefficients a and b minimizing the error in 2-norm,

min

∥∥∥∥∥∥
 1 1

2 1
3 1

[
a
b

]
−

 1.8
3

4.2

∥∥∥∥∥∥
2

2

.
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Application 1 - Least square method Feasible direction theorem Nonlinear Programs

Then

[
a
b

]
=

[
1 2 3
1 1 1

] 1 1
2 1
3 1

−1 [
1 2 3
1 1 1

] 1.8
3

4.2


=

1
6

[
3 −6
−6 14

] [
20.4
9

]
=

[
1.2
0.7

]
.

The obtained linear model is y = 1.2x + 0.7.
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Application 1 - Least square method Feasible direction theorem Nonlinear Programs

Exercise 11.3

Suppose we have observed the values of independent and dependent
variables as follows:

x 1 2 3 4

y 3 13 20 38

We have chosen a quadratic regression model y(x) = ax2 + c. Compute a
2-norm error minimizing regression coefficients a and c.
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Application 1 - Least square method Feasible direction theorem Nonlinear Programs

Repeat the problems using the following norms instead of 2-norm ‖ · ‖2.

‖x‖∞ = max {|x1|, |x2|, . . . , |xn|} , (11.20)

‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|. (11.21)
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Sufficiency of KKT conditions Nonlinear Programs

Proposition 12.1

A feasible solution x∗ of a convex optimization min{f(x) : g(x) ≡ (g1(x), . . .,
gm(x)) ≥ 0} is optimal if there is λ∗ satisfying

∇f(x∗)−
∑m

i=1 λ∗
i∇gi(x∗) = 0,

λ∗ ≥ 0,

λ∗
i = 0,∀i /∈ A(x∗)

(
⇔ (λ∗)T g(x∗) = 0

)
.

(KKT conditions)

Proof: For each λ, we consider the function in x defined by L(x;λ) ≡ f(x) −
λT g(x) (called Lagrangian (��Õª|½Ót�îß�)) Since gi’s are concave in x and λ ≥ 0,
L(x;λ) is convex in x. Since x∗ is a stationary point by the first condition,
L(x;λ∗) is minimized at x = x∗. In particular, for every feasible solution x,

L(x∗;λ∗) = f(x∗)− (λ∗)T g(x∗) ≤ f(x)− (λ∗)T g(x) ≤ f(x). (12.22)

The last inequality follows from λ∗ ≥ 0 and g(x) ≥ 0. The third condition,

(λ∗)T g(x∗) = 0 implies f(x∗) = L(x∗;λ∗), and therefore (12.22) implies f(x∗)
≤ f(x) ∀ x ∈ F . �
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Application 2 - Hyperplane classifier Sufficiency of KKT conditions Nonlinear Programs

Hyperplane classifier
Given two sets {ui|i ∈ U} and {vi|i ∈ V }, find a hyperplane (w, b) that separates
two sets by a ‘maximum’ margin.

Suppose the supporting hyperplanes are wT x = b− t and wT x = b + t, and the
support vectors are u ∈ U , v ∈ V . Then the margin is (v − u)T w

‖w‖ = 2 t
‖w‖ .
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Application 2 - Hyperplane classifier Sufficiency of KKT conditions Nonlinear Programs

If we assume t > 0, then the problem of finding hyperplane with a largest margin
becomes a QP:

max t
‖w‖2

(⇔ min ‖w‖2
t )

s.t. uT
i w − b ≥ +t, i ∈ U,

vT
i w − b ≤ −t, i ∈ V,

⇔ min ‖w‖22
s.t. uT

i w − b ≥ +1, i ∈ U,
vT

i w − b ≥ −1, i ∈ V.

For a general case when two sets U and V are not separable by a hyperplane, we
can allow error ξi ≥ 0 for each i and add a total error penalty to the objective
function:

min ‖w‖22 + γ
∑

i ξi

s.t. uT
i w − b ≥ +1− ξi, i ∈ U,

vT
i w − b ≤ −1 + ξi, i ∈ V,

ξi ≥ 0, i ∈ U, V.
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