
Application 2 - Hyperplane classifier Sufficiency of KKT conditions Nonlinear Programs

Hyperplane classifier
Given two sets {ui|i ∈ U} and {vi|i ∈ V }, find a hyperplane (w, b) that separates
two sets by a ‘maximum’ margin.

Suppose the supporting hyperplanes are wT x = b− t and wT x = b + t, and the
support vectors are u ∈ U , v ∈ V . Then the margin is (v − u)T w

‖w‖ = 2 t
‖w‖ .
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If we assume t > 0, then the problem of finding hyperplane with a largest margin
becomes a QP:

max t
‖w‖2

(⇔ min ‖w‖2
t )

s.t. uT
i w − b ≥ +t, i ∈ U,

vT
i w − b ≤ −t, i ∈ V,

⇔ min ‖w‖22
s.t. uT

i w − b ≥ +1, i ∈ U,
vT

i w − b ≥ −1, i ∈ V.

For a general case when two sets U and V are not separable by a hyperplane, we
can allow error ξi ≥ 0 for each i and add a total error penalty to the objective
function:

min ‖w‖22 + γ
∑

i ξi

s.t. uT
i w − b ≥ +1− ξi, i ∈ U,

vT
i w − b ≤ −1 + ξi, i ∈ V,

ξi ≥ 0, i ∈ U, V.
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Example 12.2

Suppose U = {(3, 0), (0, 3), (−1,−1)}, V = {(−3, 0), (0,−3), (1, 1)}
and we have chosen γ = 1.

min w2
1 + w2

2 +
∑6

i=1 ξi

s.t (3w1 − b)− 1 + ξ1 ≥ 0,
(3w2 − b)− 1 + ξ2 ≥ 0,

(−w1 − w2 − b)− 1 + ξ3 ≥ 0,
−(−3w1 − b− b)− 1 + ξ4 ≥ 0,
−(−3w2 − b)− 1 + ξ5 ≥ 0,

−(w1 + w2 − b)− 1 + ξ6 ≥ 0,
ξ ≥ 0,∀i = 1, · · · , 6.
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Unconstrained cases Optimization algorithms Nonlinear Programs

min f(x) (13.23)

where f : Rn → R is convex and twice continuously differentiable on an open
domain domf .

Assumption 13.1

There exists an optimal point x∗ such that p∗ = f(x∗) = infx f(x).

Since f is differentiable and convex, x∗ is optimal if and only if

∇f(x∗) = 0. (13.24)

Thus, solving (13.23) is the same as finding a solution of (13.24), a set of n
equations in n variables x1, . . ., xn.
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We can find a solution of (13.23) by either solving (13.24) analytically, or
using an iterative method computing a sequence of points
x(0), x(1), · · · ∈ domf with

f(x(k))→ p∗ as k →∞.

An iterative algorithm normally requires a suitable starting point x(0) such
that x(0) ∈ domf , and S = {x ∈ domf |f(x) ≤ f(x(0))} is closed.
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Analytic examples Optimization algorithms Nonlinear Programs

Example 13.2

min 1
2xT Px + qT x + r, (13.25)

where P is a PSD matrix, q ∈ Rn, and r ∈ R.

Any x∗ satisfying Px∗ = −q is an optimal solution.

If P is invertible, x∗ = −P−1q is a unique optimal solution.

If Px = −q does not have a solution, (13.25) is unbounded below.

Example 13.3

min ‖Ax− b‖22 = xT (AT A)x− 2(AT b)T x + bT b. (13.26)

The optimality conditions AT Ax∗ = AT b are called the normal equations of
the least-square problem.
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Descent methods Descent methods Nonlinear Programs

In iterative algorithms, we generate a minimizing sequence x(k), k = 1, 2, . . .

x(k+1) = x(k) + σ(k)d(k), σ(k) > 0,

where, d(k) is called search direction at iteration k, and σ(k) step size at iteration
k.

In descent method, sequence x(k), k = 1, 2, . . . satisfies

f(x(k+1)) < f(x(k)).

Proposition 14.1

If f is convex, a method is descent if and only ∇f(x(k))T d(k) < 0.
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Gradient descent method Descent methods Nonlinear Programs

A natural choice is then d(k) = −∇f(x(k)).
Compute an initial point x(0).

Until a stopping criterion is satisfied, generate xk k = 1, 2, . . .:

x(k+1) = x(k) − σ(k)∇f(x(k)).

where, σ(k) > 0 is called the step size at iteration k.

σ(k) = σ > 0 fixed.

σ(k) = arg minσ>0 f
(
x(k) − σ∇f(x(k))

)
. Not practical!

σ(k) = σ√
k+1

, for a constant σ > 0.

In exact line search e.g. Goldstein-Armijo’s rule.
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