
Weak duality Duality Linear Inequality Systems

Let (x, y) be a pair of feasible solutions of (3.7) and (3.8). From feasibility
and nonnegativity of y, in turn, we get cT x = yT Ax ≥ yT b.

Theorem 3.2

Weak Duality (����©�@/&ñ
o�) Every primal-dual pair of feasible solutions,
(x, y), satisfies cT x ≥ yT b.

Weak duality tells us some useful facts.

Corrolary 3.3

If the objective of one problem can be improved arbitrarily (minimized
or maximized without a bound), the other problem is infeasible.

If the objective values from a pair of feasible (x, y) are equal, x and y
are optimal solutions.

We actually have a stronger relation between two problems.

Optimization Lab. 25th March 2018 14 / 50



Strong duality Duality Linear Inequality Systems

Theorem 3.4

Strong Duality (y©��©�@/&ñ
o�) If one of (3.7) and (3.7) has an optimal
solution, so does the other and their objective values are equal.

Proof: We assume (3.7) has an optimal solution with objective value δ
and show (3.8) also has an optimal solution with objective value δ. It is,
by weak duality, equivalent to the feasibility of the system

AT y ≥ c
−AT y ≥ −c

Iy ≥ 0
bT y ≥ δ.

(3.9)

Assume on the contrary (3.9) is infeasible. Then, by Farkas Lemma
(Theorem 2.1), there are u, v, w, and z satisfying the followings.
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Strong duality Duality Linear Inequality Systems

Proof(cont’d):

u, v, w, z ≥ 0
uT AT − vT AT + wT + zbT = 0

uT c− vT c + zδ > 0.

Substituting x′ = v − u, and eliminating w we get

z ≥ 0
Ax′ ≥ zb

cT x′ < zδ.

If z = 0, then Ax′ ≥ 0, cT x′ < 0. For any feasible solution x̄ of (3.7),
x̄ + αx′ is also feasible for all α > 0. Its objective value can be made
arbitrarily negative by taking α → +∞. A contradiction to that (3.7) has
an optimal solution.

If z > 0, then 1
zx′ is feasible and its objective value less than δ. Also a

contradiction. The other direction is proved similarly.
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Strong duality Duality Linear Inequality Systems

Exercise 3.5

If one problem is infeasible, then the other is infeasible or unbounded (i.e.
its objective can be improved unboundedly).

Remark 3.6

We can prove Farkas Lemma by using duality. Therefore, two are
equivalent.

Exercise 3.7

(FYI �ÃÐ�¦) Let A ∈ Rm×n, B ∈ Rm×p. Then polyhedron P =
{(x, y) ∈ Rn+p : Ax + By ≥ b, x ≥ 0, y ≥ 0} projected to y-space is
given by

πy(P ) = {y ∈ Rp| y ≥ 0, uT (b−By) ≤ 0, ∀ u ≥ 0 s.t. uT A ≤ 0}.

Optimization Lab. 25th March 2018 17 / 50
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Proposition 3.8

Suppose Ax ≥ b is feasible and cT x ≥ d is redundant to it. (I.e. Ax ≥ b
implies cT x ≥ d.) Then there is y ≥ 0: yT A = cT , yT b ≥ d. In other
words, we can construct an inequality dominating cT x ≥ d by a
nonnegative combination of inequalities of Ax ≥ b. Then, in particular,

r

(
A
cT

)
= r(A).

¤� ÃZ�: From the assumption, min{cT x : Ax ≥ b} is greater than or equal
to d. By strong duality, the optimal values of two problem are the same
and hence max{bT y : AT y = c, y ≥ 0}, is also greater than or equal to d.
I.e. there is y ≥ 0: yT A = cT , yT b ≥ d.

Exercise 3.9

Suppose yT c ≥ 0 ∀ y : yT vi ≥ 0 for i = 1, . . ., k. Then, there is λ ≥ 0: c
= λ1v1 + · · · + λkvk.
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Exercise 3.10

Suppose the standard linear program has an optimal solution

min cT x
s.t Ax = b

x ≥ 0.

Compute the range of K for which the following system is feasible.

Ax = b
x ≥ 0

AT y + s = c
s ≥ 0

sT x = K
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Exercise 3.11

Write the dual of the linear program.

min 0T x
s.t. Ax = b

x ≥ 0

Derive a necessary and sufficient condition for a standard linear system has no
feasible solution.
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Complementary slackness Duality Linear Inequality Systems

Consider the correspondence between (3.7) and (3.8) in the variables of
one problem and the constraints of the other:

xj ←→ yT A·j = cj ,

Ai·x ≥ bi ←→ yi ≥ 0.

Definition 3.12

(Slackness of a constraint or sign restriction) Given a pair of
feasible solutions x̄ and ȳ, the slackness of a constraint or sign
restriction is the absolute value of the difference between its two sides
when x = x̄ and y = ȳ.

For instance, the slack of the i-th constraint of (3.7) is Ai·x̄ − bi, and the
slack of the i-the nonnegativity restriction yi ≥ 0 of (3.8) is ȳi. An
equality constraint has a slack 0.
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Theorem 3.13

Complementary slackness (�©��Ð #�Ä»$í
) A pair of feasible solutions
(x∗, y∗) from (3.7) and (3.8) is optimal if and only if the product of the
slacks is zero for every pair of corresponding constraint and nonnegativity
restriction.

Proof: From weak and strong duality theorems, a feasible pair (x∗, y∗) is
optimal exactly when

0 = cT x∗ − (y∗)T b = (y∗)T Ax∗ − (y∗)T b = (y∗)T (Ax∗ − b)
= y∗1(A1·x

∗ − b1) + · · ·+ y∗m(Am·x
∗ − bm).

(3.10)

Since Ai·x
∗ − bi ≥ 0, yi ≥ 0 for every i, the condition is equivalent to

y∗1(A1·x
∗ − b1) = 0, . . ., y∗m(Am·x

∗ − bm) = 0. Hence the theorem.
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Exercise 3.14

Consider the following LP.

min 18x1 +12x2 +2x3 +6x4

s.t 3x1 +x2 −2x3 +x4 = 2
x1 +3x2 −x4 = 2

x1 ≥ 0 x2 ≥ 0 x3 ≥ 0 x4 ≥ 0

1) Write the dual.

2) Find an optimal solution of the dual from graphic method.

3) Obtain a primal optimum from the complementary slackness.
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Definition 4.1

A set H ⊆ Rn is called a hyperplane if H = {x : aT x = b} for a nonzero
vector a ∈ Rn and a real number b; G a halfspace if G = {x : aT x ≥ b}
for a nonzero vector a ∈ Rn and a real number b.

Every hyperplane defined by a ∈ Rn is a translation of the null space of
a ∈ Rn. (Hyperplanes are a special class of affine spaces.

Definition 4.2

For a feasible solution x̄ of an LP, y is said to be a feasible direction, if
we can move into y for a positive distance maintaining feasibility,
namely if there is λ̄ such that x̄ + λy is feasible for every 0 < λ < λ̄.

For any x̄ ∈ F = {x : aT x ≥ b}, y is a feasible direction if cT y ≥ 0.
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Figure: The null space, hyperplane, and half space defined by a, and feasible direction

Exercise 4.3

For any feasible solution of Ax ≥ b, then y is a feasible direction if and
only if y is a feasible solution of the ‘homogeneous’ linear system Ax ≥ 0.
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For a simplicity of illustration, consider a 2-dim linear program of
minimizing cT x over the feasible solutions of the linear system A1·x ≥ b1

and A2·x ≥ b2. Let the intersection x∗ of the two hyperplanes be an
optimal solution. cT x increases in a direction y if cT y < 0. The points of
the blue region (with boundary excluded) indicate the increasing directions.
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