
Geometrical interpretation Duality Linear Inequality Systems

On the other hand, the y’s with Ay ≥ 0 the the feasible directions for x∗,
the points of the red region.

Since x∗ is optimal, there is no direction both feasible and increasing. In
other words, cT y ≥ 0 for all y such that Ay ≥ 0, or max{cT y : Ay ≤ 0
} = 0. By the strong duality, there is a dual solution λ ∈ R2: c = AT λ =
λ1A

T
1· + λ2A

T
2·, λ1 ≥ 0, λ2 ≥ 0.

It means c, in the 2-dim example, is between two vectors AT
1· and AT

2· so
that the blue and red regions have no intersection:

Exercise 4.4

The argument applies to a general case min{cT x : Ax ≥ 0 } for optimal
solution x̄, and the constraints x̄ satisfies with equality (called active
constraints).
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Exercise 4.5

Consider the linear program

max f(x) = 4x1 +2x2

sub. to g1(x) = x1 +2x2 −10 ≤ 0
g2(x) = 4x1 −x2 −4 ≤ 0
g3(x) = −x1 ≤ 0
g4(x) = −x2 ≤ 0

1. Write the dual.
2. From the graph, (2, 4) is an optimal solu-
tion. Repeat the same observation in terms
of the active constraints and c. Compute the
coefficients λi’s of the vectors Ai· in their
nonnegative linear combination representing
c.
3. It we set λi = 0 for i not active at (2, 4), λ
becomes an optimal solution of dual problem.
4. Compute the objective coefficient d for
which (0, 5) is optimal.
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The computational efforts required to solve (or computational complexity of) an
optimization problem depend on the characteristics of the functions of the
objective and constraints. In particular, if both objective function and the feasible
region are convex, an optimization problem is solvable efficiently.

A straight line passing through two points x, y ∈ Rn can be parameterized in λ
as follows.

x + λ(y − x) = (1− λ)x + λy. (5.11)

If λ is allowed to be any real number, (5.11) is called a affine combination of x

and y. For 0 ≤ λ ≤ 1, (5.11) is called a convex combination of x and y.
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Definition 5.1

A set S ⊆ Rn is convex if it contains every line segment connecting its two
points: (1− λ)x + λy ∈ S, ∀ x, y ∈ S, ∀ 0 ≤ λ ≤ 1.

The figure shows convex and nonconvex sets.

Proposition 5.2

If S1 and S2 are convex, then their intersection S1 ∩ S2 is convex.

Proof: Take any two points x1 and x2 from S1 ∩ S2 and any λ with 0 ≤ λ ≤ 1.
From the convexity of S1, (1 − λ)x1 + λx2 ∈ S1. Similarly, it is also contained
in S2. Hence (1 − λ)x1 + λx2 ∈ S1 ∩ S2.
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Definition 5.3

For a set S ⊆ Rn, a function f : S → R is convex if S is a convex set and

f((1− λ)x + λy) ≤ (1− λ)f(x) + λf(y), ∀x, y ∈ S, ∀λ : 0 ≤ λ ≤ 1.

f is concave if −f is convex. f is affine if f is both convex and concave.
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Example 5.4

f(x) = x2 is a convex function. For if 0 ≤ λ ≤ 1, we have (1− λ)f(x) + λf(y)
− f((1− λ)x + λy) = (1− λ)λ(x− y)2 ≥ 0. Hence f(x) = −x2 is concave.

Proposition 5.5

Suppose f and g are convex. Then for any α ≥ 0, f + g, αf is convex.

Exercise 5.6

A linear functional f(x) = cT x is both convex and concave, and hence affine.

Exercise 5.7

Is f(x, y) = 2x2 − xy + y2 +2x −3y convex?
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A convex combination can be extended in terms of a finite number of vectors.

Definition 5.8

Convex combination For an integer k ≥ 2 and λ ∈ Rk such that λ1 + · · ·
+ λk = 1 and λ1 ≥ 0, . . ., λk ≥ 0, the following vector v is called a convex
combination of v1, v2, . . ., vk.

v = λ1v1 + · · ·+ λkvk (5.12)

Suppose v is a convex combination k + 1 vectors, v = λ1v1 + · · · + λkvk +
λk+1vk+1. 0 < λ1 < 1. If we let µ = λ2 + · · ·+ λk+1, then 0 < µ < 1, and v
can be rewritten as follows.

v = (1− µ)v1 + µ
(

λ2v2+···+λk+1vk+1
λ2+···+λk+1

)
.

Every convex combination can be represented by a repeated convex combination
of two vectors.

Definition 5.9

Convex hull For a set S ⊆ Rn, the convex hull, conv.S, is the smallest
convex set that includes S.
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conv.S is the intersection of convex sets including S. Why? Let the latter be S′.
Then S′ is included in the convex set conv.S. On the other hand, since S′ is
convex (why?) and includes S, it also includes the convex hull of S. Hence
conv.S = S′.

Theorem 5.10

conv.S is the set of convex combinations from S ⊆ Rn.

Proof: Let T be the set of convex combinations from S ⊆ Rn.

‘T ⊆ conv.S’ Since any element of T is a convex combination of vectors of S, it
is contained in any convex set including S. Hence it is contained in conv.S.

‘T ⊇ conv.S’ Note that a convex combination of convex combinations of vectors
of S is a convex combination of vectors of S (Check it!). Therefore T is a convex
set including S and thus includes conv.S.

Corrolary 5.11

The convex hull of S = {v1, v2, . . . , vk} ⊆ Rn is {λ1v1 + · · · + λkvk| λ1 + · · ·
+ λk = 1, λ1 ≥ 0, . . ., λk ≥ 0}.
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When k = 2, the convex hull is the line segment connecting two points.
When k = 3, it is triangular with the three vectors as its vertices. In
general, the convex hull of a finite set S of vectors is the convex region
defined by a polygon whose vertices are from S.

Definition 5.12

(�̂¦2�¤��y��+þA, polytope) We call the convex hull of a finite set of vectors
a polytope.
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Proposition 5.13

For a finite set S = { v1, v2, . . ., vk }, consider the optimization
min{cT x|x ∈ conv.S}. Then an optimum is attained in S: there is vi

which is an optimal solution the problem.

¤� ÃZ� Suppose v1 makes smallest the objective value cT x over S. Then for

any convex combination of S, cT (λ1v1 + · · · + λkvk) = cT
(
(1− λ2 −

· · · − λk)v1 + λ2v2 + · · · + λkvk

)
= cT v1 + λ2(cT v2 − cT v1) + · · · +

λk(cT vk − cT v1) ≥ cT v1.
Thus, the optimizations on S and its convex hull are essentially the same
thing.

Remark 5.14

It can be more convenient to deal with the convex hull of a set of vectors than the
set itself. For instance, the convex hull can be represented by a compact linear
system whereas the elements of S are too large.
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Definition 6.1

If a set L ⊆ Rn contains every straight line through any two points of itself, L
is said to be an affine set (î̈
��� |9�½+Ë). In other words, an affine set is a set
closed under affine combination:

(1− λ)x + λy ∈ L, ∀x, y ∈ L, ∀λ ∈ R. (6.13)

A subspace is an affine set. Affine set is a convex set.

Definition 6.2

Affine combination also can be extended in terms of a finite number of vectors
S = {v1, v2, . . . vk}.

λ1v1 + · · ·+ λkvk, λ1 + · · ·+ λk = 1. (6.14)

Similarly, any affine combination can be expressed by repeated affine
combinations of two vectors. (Check it). Therefor a set is affine set if and only if
it is closed under affine combination of any finite set of its elements.
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Definition 6.3

Let S ⊆ Rn. By the affine hull, aff.S, of S, we mean the smallest affine set
that includes S.

Exercise 6.4

aff.S is the intersection of affine sets including S.

Exercise 6.5

aff.S is the same as the set of affine combinations of vectors of S.
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Proposition 6.6

If we translate an affine set L ⊆ Rn by a vector w so that L− w contains
the origin, then the set L− w ≡ {v − w : v ∈ L} is a subspace of Rn.
(For L− w to contain the origin, necessarily w ∈ L.)

Proof: We show that L − w is closed
under addition and scalar multiplication:
∀ u, v ∈ L, ∀ α ∈ R, (u−w) + α(v−w)
∈ L−w. But, (u−w) + α(v−w) = (u
+ αv − αw) − w and the parenthesized
term ∈ L (why?). Hence the proposition
follows.

Note that for every w, w′ ∈ L, L− w = L− w′. For l ∈ L, l − w =
l−w + w′−w′ ∈ L−w′ and similarly l−w′ ∈ L−w. Thus the subspace
is uniquely determined independently on the choice of w.

Optimization Lab. 25th March 2018 39 / 50



Affine sets î̈
��� |9�½+Ë Linear Inequality Systems

Conversely,

Exercise 6.7

A subspace S translated by any vector w, S + w, is an affine set.

We have seen that affine sets are exactly the translated subspaces.

Exercise 6.8

Let S be a subspace. Then w /∈ S iff S and S + w do not intersect.

Proposition 6.9

There is a unique subspace whose translation yields the same affine
subspace.

Proof: Suppose, two subspaces S and S′ are translated by w and w′,
respectively, to be the same affine set: S + w = S′ + w′ or S =
S′ + (w′ − w). This implies w′ − w and hence −(w′ − w) ∈ S. Therefore,
S′ = S −(w′ − w) = S.
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An affine space has a very special structure.

Proposition 6.10

Every affine space L is the set of solutions of a linear equality system
Ax = b.

Proof: Take any w ∈ L. Since S = L− w ⊆ Rn is a subspace, it has a
basis of k vectors for some k ≤ n. Then by applying G-J method to the
matrix having the k vectors as rows, we can construct a matrix A whose
null space is S. (Provide the details!) Let b = Aw. Then we can easily
check, i) Ax = b defines an affine set, and ii) Ax = b has the solution set
of Ax = 0 translated by w, namely, L.

Exercise 6.11

Let the affine hull of vectors x1 = [1, 2, 3, 6]T , x2 = [−1, 4, 1, 2]T be L.

(1) Represent L as L = S + w for some subspace S and a vector w ∈ L.

(2) Compute A and b so that L = {x ∈ R4 : Ax = b}.
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Definition 6.12

The vectors v1, v2, . . ., vk are affinely independent if v2 − v1, . . ., vk − v1 is
linearly independent; affinely dependent, otherwise.

We first check the subtracting vector is irrelevant in the definition: v2 − v1,
v3 − v1, . . ., vk − v1 are linearly independent ⇔ v1 − v2, v3 − v2, . . ., vk − v2 are
linearly independent ⇔ · · · . (Check it.) It is also easy to see that affine
independence is invariant with a translation.

Proposition 6.13

The vectors v1, v2, . . ., vk are affinely independent only λ = 0 satisfies the
following. The converse is also true.

λ1v1 + · · ·+ λkvk = 0
λ1 + · · ·+ λk = 0.

(6.15)

(6.15) is equivalent to that the following vectors are linearly independent.[
v1

1

]
,

[
v2

1

]
, · · · ,

[
vk

1

]
.
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Exercise 6.14

Linearly independent vectors are also affinely independent.

If we translate, by w /∈ S, a basis of a subspace S, and add w to it, then
the resulting set is a set of affinely independent vectors. Therefore, the
maximum number of affinely independent vectors from S + w is ≥
dim(S) + 1. But it can not exceed dim(S) + 1 (why?).

Proposition 6.15

The maximum number of affinely independent vectors in S + w is dim S
+ 1.
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