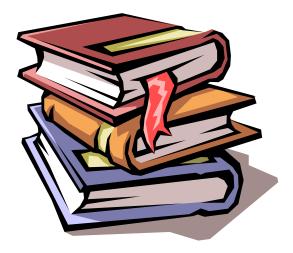
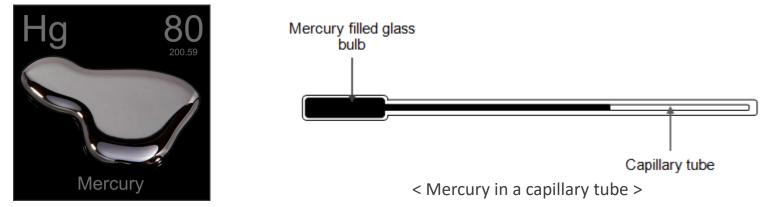
Cryogenic Engineering


2017 Fall Semester

Kim, Min Soo

Chapter 6.

Measurement Systems for Low Temperatures



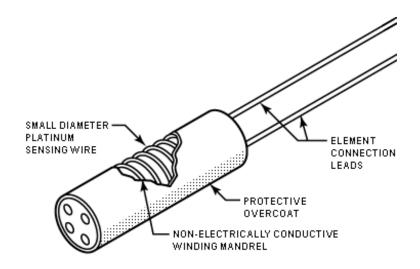
Temperature measurement from temperature property

- 1 Mercury in a capillary tube
- ② Pt (platinum) wire resistance
- ③ Ideal gas pressure
- (4) Thermoelectric emf (voltage)
- (5) Equilibrium pressure of gas
- 6 Difference in thermal expansion
- \bigcirc Speed of sound
- (8) Magnetic susceptibility

Temperature measurement from temperature property

1 Mercury in a capillary tube

Mercury in glass	-39 °C to +357 °C
Pressurised mercury in glass	-39 °C to +500 °C
Pressurised mercury in quartz	-39 °C to +800 °C
Alcohol in glass	-120 °C to +60 °C
Pentane in glass	-200 °C to +30 °C

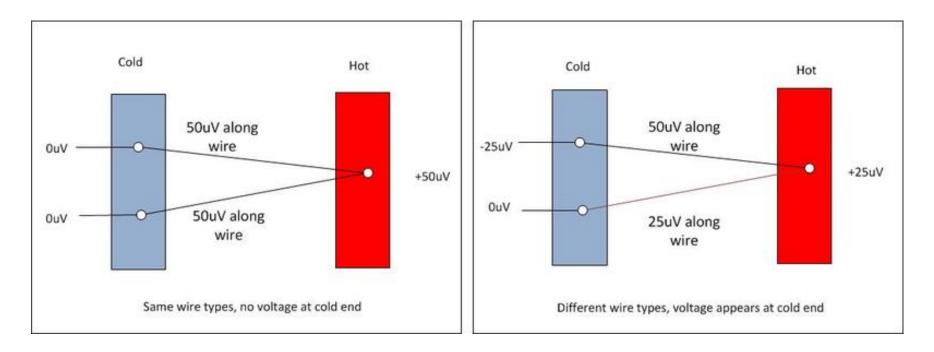

< The ranges of the most common liquid-in-glass thermometers >

- Temperature measurement from temperature property
 - ② Pt (Platinum) wire resistance

< Platinum >

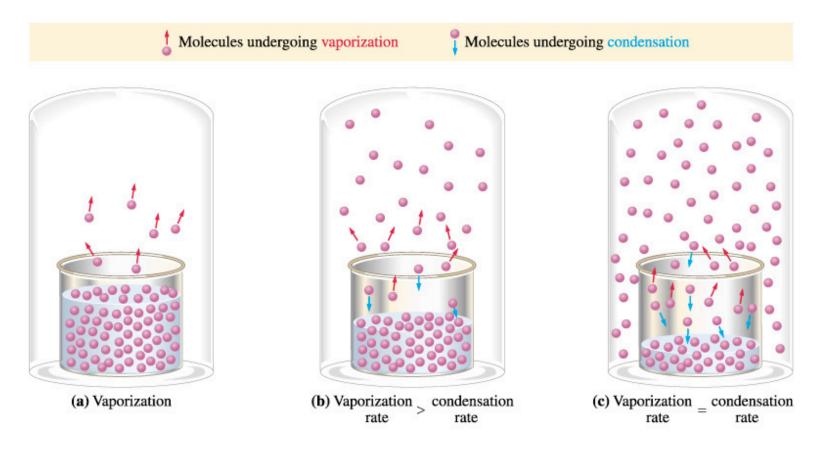
< wire-wound sensing element >

Temperature measurement from temperature property

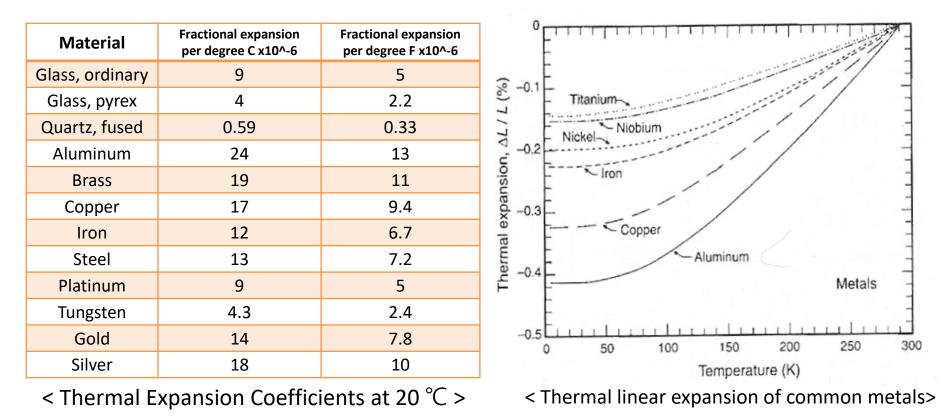

③ Ideal gas pressure

Properties

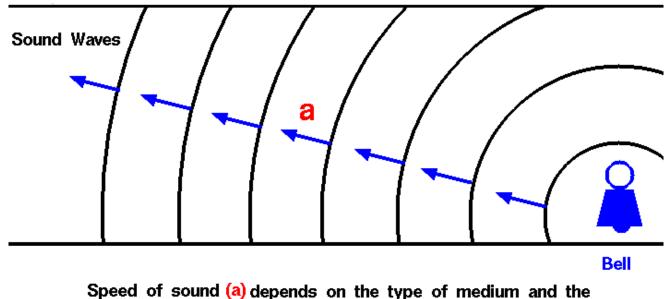
Density = ρ Temperature = T Volume = V Pressure = p Mass = M Observations Boyle: For a given mass, at constant temperature, the $\mathbf{p}\mathbf{V} = \mathbf{C}_1$ pressure times the volume is a constant. Charles and For a given mass, at constant pressure, the volume Gay-Lussac: is directly proportional to the temperature. $V = C_2 T$ $\mathbf{p} \mathbf{V} / \mathbf{T} = \mathbf{n} \mathbf{\overline{R}} \mathbf{\overline{R}} = 8.31 \text{ J} / \text{mole} / \mathbf{K}$ (Universal) Combine: $pV = n\overline{R}T$ n = number of moles pv=<u>nR</u>T Divide by mass: Specific Volume = v $\mathbf{v} = \frac{\mathbf{volume}}{\mathbf{mass}} = \frac{1}{\rho}$ р pv = RTor $\mathbf{p} = \mathbf{R} \, \rho \mathbf{T}$ R = Constant value for each gas = .286 kJ/kg/K (for air)


Temperature measurement from temperature property

④ Thermoelectric EMF(Electro Motive Force)


Temperature measurement from temperature property

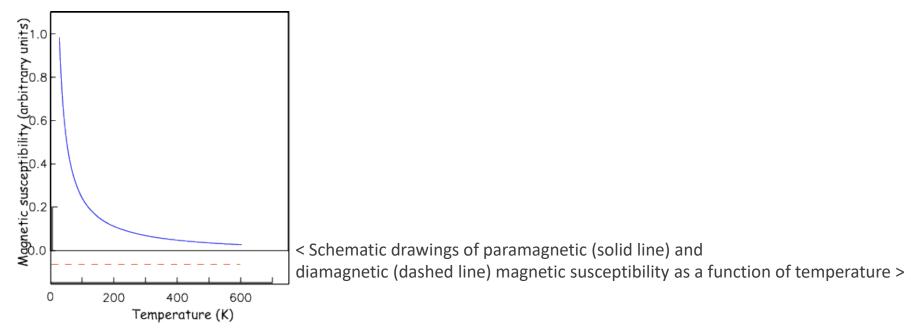
(5) Equilibrium pressure of gas



Temperature measurement from temperature property

6 Difference in thermal expansion

- Temperature measurement from temperature property
 - ⑦ Speed of sound


Speed of sound (a) depends on the type of medium and the temperature of the medium.

> a = sqrt (γ R T) γ = ratio of specific heats (1.4 for air at STP) R = gas constant (286 m²/s²/K for air) T = absolute temperature (273.15 + °C)

Temperature measurement from temperature property

(8) Magnetic susceptibility

Magnetic susceptibility, quantitative measure of the extent to which a material may be magnetized in relation to a given applied magnetic field. The magnetic susceptibility of a material, commonly symbolized by χm , is equal to the ratio of the magnetization M within the material to the applied magnetic field strength H, or $\chi m = M/H$. This ratio, strictly speaking, is the volume susceptibility, because magnetization essentially involves a certain measure of magnetism (dipole moment) per unit volume.

6.2 Temperature scales and fixed points

ITS-27 (International Temperature scale)

- The ITS-27 was based on six fixed points.
- ITS-27 was defined only down to the NBP of oxygen or about 190°C.

ITS-48 (1948)

- Adopted several changes in the international temperature scale
- The same six fixed points were used.

ITS-48 (1960)

 Triple point of water became a standard fixed point instead of the freezing point of water

IPTS-68

	Temperature			
Fixed Point	°C	K	°R	
NMP ^a of gold (gold point)	1064.43	1337.58	2407.64	
NMP of silver	961.93	1235.08	2223.14	
NMP of zinc	419.58	692.73	1246.91	
NBP ^b of water (steam point)	100.00	373.15	671.67	
Standard-triple point of water	0.01	273.16	491.69	
NBP of oxygen	-182.962	90.188	162.338	
TP ^c of oxygen	-218.789	54.361	97.850	
NBP of neon	-246.048	27.102	48.784	
NBP of hydrogen	-252.87	20.28	36.50	
B.P. of hydrogen at 25 torr	-256.108	17.042	30.676	
TP of hydrogen	-259.34	13.81	24.86	

Table 6.1. Temperatures of primary fixed points on the IPTS-68

 $^{a}NMP = normal melting point or freezing point$

 b NBP = normal boiling point

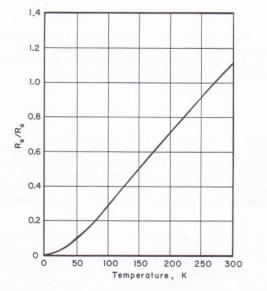
 $^{c}TP = triple point$

6.2 Temperature scales and fixed points

ITS-90

Table 7-1. Defining Fixed Points of the ITS-90

Description	к	°C
Vapor pressure (VP) point of helium	3 to 5	-270.15 to -268.15
Equilibrium hydrogen at triple point (TP)	13.8033	259.3467
Equilibrium hydrogen at VP point	≈17	≈-256.15
Equilibrium hydrogen at VP point	≈ 20.3	≈-252.85
Neon at TP	24.5561	248.5939
Oxygen at TP	54.3584	218.7916
Argon at TP	83.8058	189.3442
Mercury at TP	234.3156	38.8344
Water at TP	273.16	0.01
Gallium at melting point (MP)	302.9146	29.7646
Indium at freezing point (FP)	429.7485	156.5985
Tin at FP	505.078	231.928
Zinc at FP	692.677	419.527
Aluminum at FP	933.473	660.323
Silver at FP	1234.93	961.78
Gold at FP	1337.33	1064.18
Copper at FP	1357.77	1084.62


Callendar-van Dusen equation

$$R_{e} / R_{0} = 1 + At + Bt^{2} + Ct^{3} (t - 100)$$

Typical values for platinum thermometers are

$$R_0 = 25 \Omega, A = 3.946 \times 10^{-3} \text{ °C}^{-1}, B = -1.108 \times 10^{-6} \text{ °C}^{-2}$$

$$C = 3.33 \times 10^{-12} \, {}^{\circ}\text{C}^{-4}$$

Choose materials for temperature range

- Platinum (Pt): below 630.74°C
- Indium (In): low temperature range

< Reduced electric resistance ratio for platinum. R_0 is the electric at 0 $^{\circ}C$ >

Fig. 6.1. Reduced electric resistance ratio for platinum. R_0 is the electric resistance at 0°C.

Platinum resistance thermometer

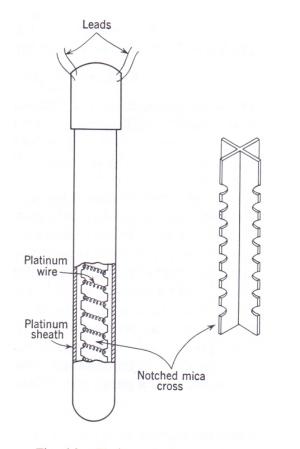


Fig. 6.2. Platinum resistance thermometer.

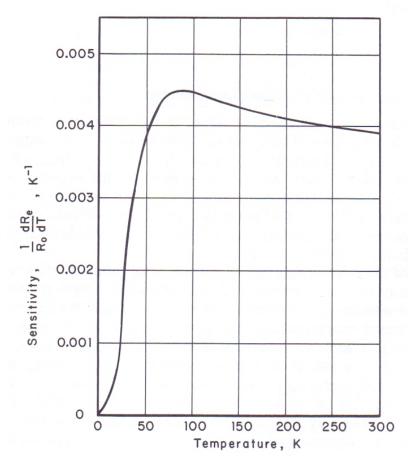
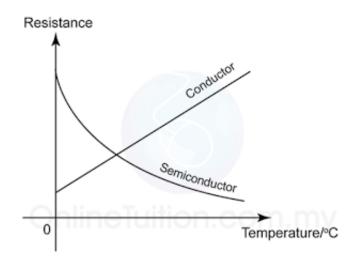


Fig. 6.3. Sensitivity of a platinum resistance thermometer.


6.4 Semiconductor resistance thermometers

Electrical conductivity of semiconductors is temperature dependent

- High temperature : exponential proportion of the absolute temperature
- Low temperature : due to the presence of impurities

Material of semiconductor thermometer

- Germanium : widely used
- Carbon : for low temperature thermometer

< The resistivity change of a conductor and semiconductor against the temperature >

One junction of thermocouple pair is placed at the point to be measured, the other junction is placed in a reference temperature region.

$$e = a_1 t + a_2 t^2 + a_3 t^3 + a_4 t^4$$
$$t = b_1 e + b_2 e^2 + b_3 e^3 + b_4 e^4$$

t : the difference in temperature

e : the thermocouple output E.M.F value

* Disadvantage : Output E.M.F is quite small

Туре	Material		Color Code	Range (°C)	
Thermocouple	Positive	Negative		Minimum	Maximum
Grade	Wire	Wire		Withingth	Maximum
J	Iron	Constantan	+	0	750
К	Chromel	Alumel	+	-200	1250
т	Copper	Constantan	+	-200	350
E	Chromel	Constantan	+	-200	900

The constant-volume thermometer may be calibrated by measuring the gas pressure T_s at a standard temperature P_s .

From ideal gas law : $T = p(T_s / p_s)$

For accurate work : $T = \frac{p(T_s/p_s)}{1 + (1 - p/p_s)(V_0/V)(T_s/T_0)} = K_1 p(T_s/p_s)$

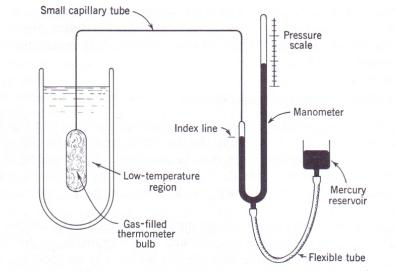
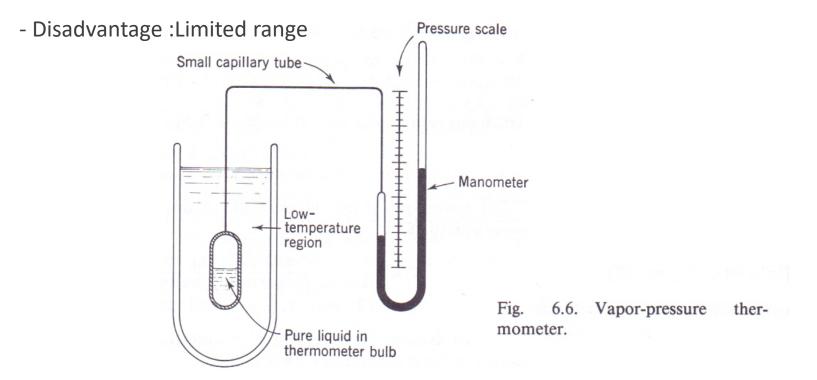



Fig. 6.4. Constant-volume gas thermometer. Other types of pressure gauges could be used instead of the manometer.

The vapor pressure(saturation pressure) is a definite function of the temperature of the liquid, so this property can be used in determining the temperature.

$$\ln(p/p_0) = C_1 - C_2/T - C_3 \ln(T/T_0) - C_4 T + C_5 T^2$$

- Advantage : Great sensitivity in the applicable temperature range

6.8 Magnetic thermometer

For temperature measurement below 1.0K.

From Curie law, define a magnetic temperature T^{*}

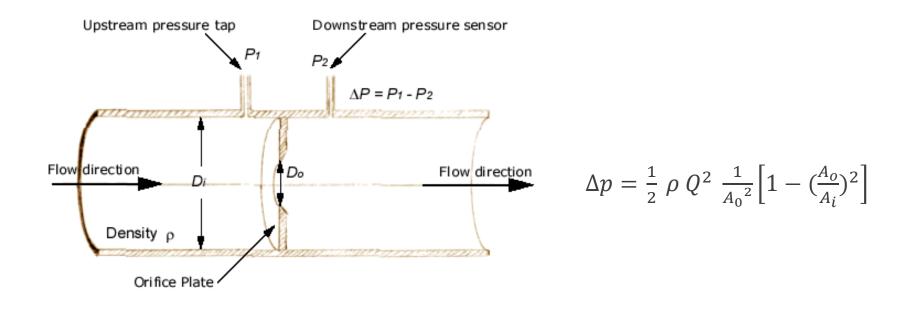
$$T^* = \frac{C}{\chi}$$
; $C = The Curie constant$, $\chi = the magnetic susceptibility$

Following are some correlations of magnetic temperature with the absolute temperature.

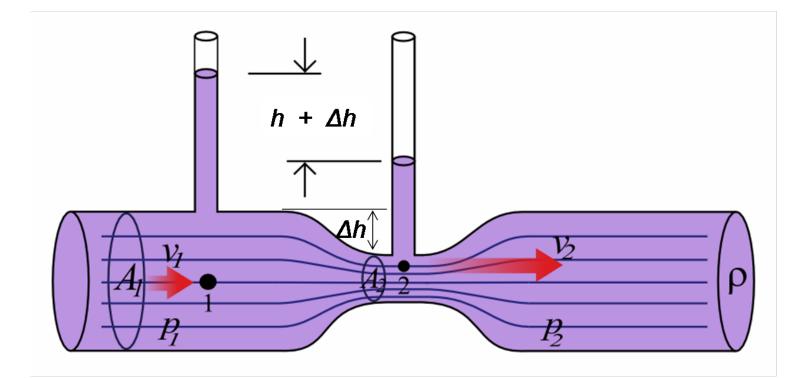
- Cerium magnesium nitrate, for $T \ge 0.004 \text{K}$

 $T^* = T + (0.236 + 0.004137/T)(10^{-3})$

- Chromic methylammonium alum, for $T \ge 0.070 \mathrm{K}$


 $T^* = T + 0.00250 + 0.002422/T$

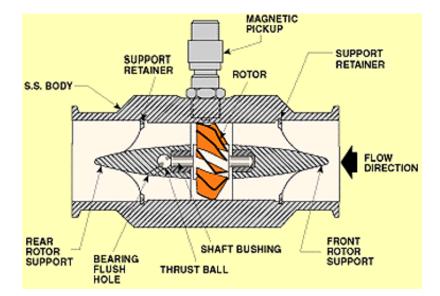
- Chromium potassium alum, for $T \ge 0.10 \mathrm{K}$


 $T^* = T + 0.000862 + 0.002057/T$

6.9 Orifice meters

A fluid passing though an orifice constriction will experience a drop in pressure across the orifice. This change can be used to measure the flowrate of the fluid. To calculate the flowrate of a fluid passing through an orifice plate, enter the parameters below.

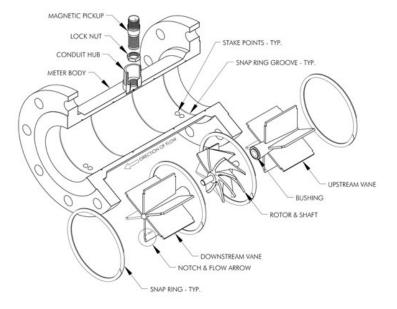
6.10 Venturi meter



$$P_1 - P_2 = \frac{\rho}{2} \left(v_2^2 - v_1^2 \right)$$

6.11 Turbine flowmeters

Advantages of turbine flow meter


- Simple, durable structure
- Easy to install and maintain
- Turbine meters are able to operate under a wide range of temperatures and pressures
- Low pressure drop across the flow meter
- Most effective in applications with steady, high-speed flows

6.11 Turbine flowmeters

Disadvantages of turbine flow meter

- Require constant backpressure in order to avoid cavitation
- Accuracy adversely affected by bubbles in liquids
- Sensitive to changes in fluid viscosity

Turbine Meter Kits

6.12 Fluid-quality measurement

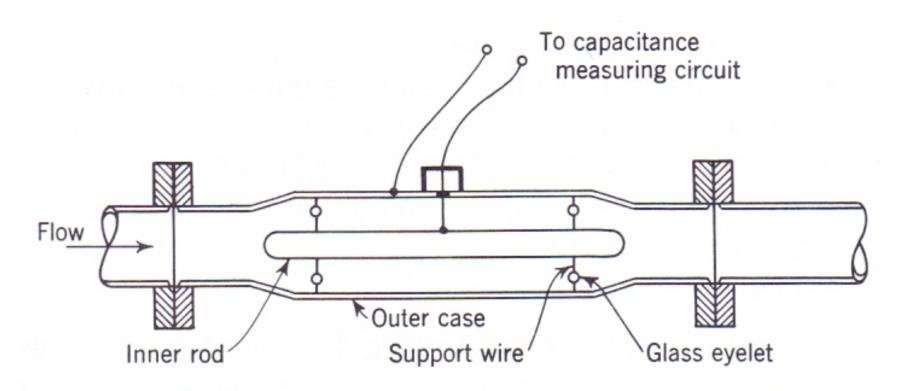


Fig. 6.12. Capacitance quality meter (Killian and Simpson 1960).

Hydrostatic pressure is related to the liquid level L_f by

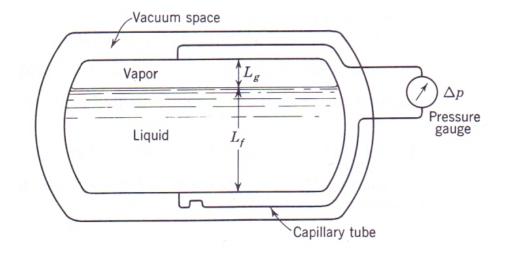
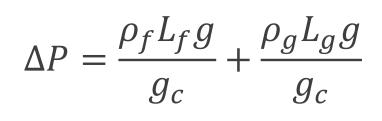



Fig. 6.13. Hydrostatic liquid-level gauge.

- L_f = height of the liquid column L_g = L-Lf = height of the vapor column L = inside diameter of the vessel
- L = inside diameter of the vessel
- $\rho_{\rm f}$ = liquid density

g = local acceleration due to gravity

g_c = conversion factor in Newton's Second Law of Motion

6.14 Electric-resistance gauges

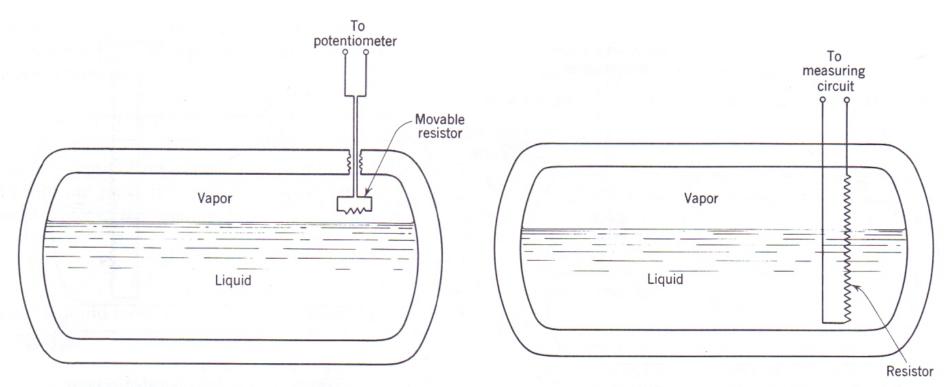


Fig. 6.14. Movable electric resistance liquid-level gauge.

Fig. 6.15. Fixed electric resistance liquid-level gauge.

6.15 Capacitance liquid-level probes

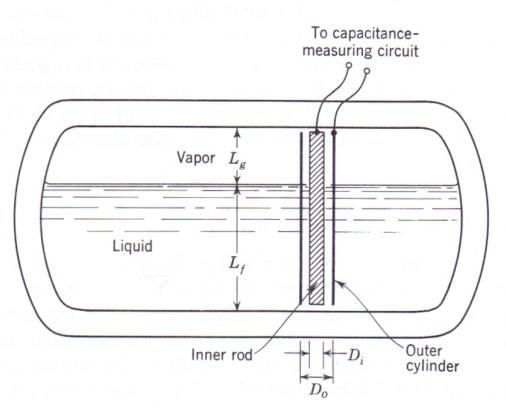


Fig. 6.16. Capacitance liquid-level gauge.

$$L_f = \frac{C \ln\left(\frac{D_0}{D_i}\right)}{2\pi(\varepsilon_f - \varepsilon_g)\varepsilon_0} - \frac{\varepsilon_g L}{\varepsilon_f - \varepsilon_g}$$

 $\varepsilon_0 = 8.8542 * 10^{-12} \frac{\text{F}}{\text{M}} = \text{permittibity of free space}$ $\varepsilon_g = The \ dielectric \ constants \ for \ the \ vapor$ $\varepsilon_f = The \ dielectric \ constants \ for \ the \ fluid$ $C = The \ total \ capacitance \ for \ the \ gauge$

6.16 Thermodynamic liquid-level gauge

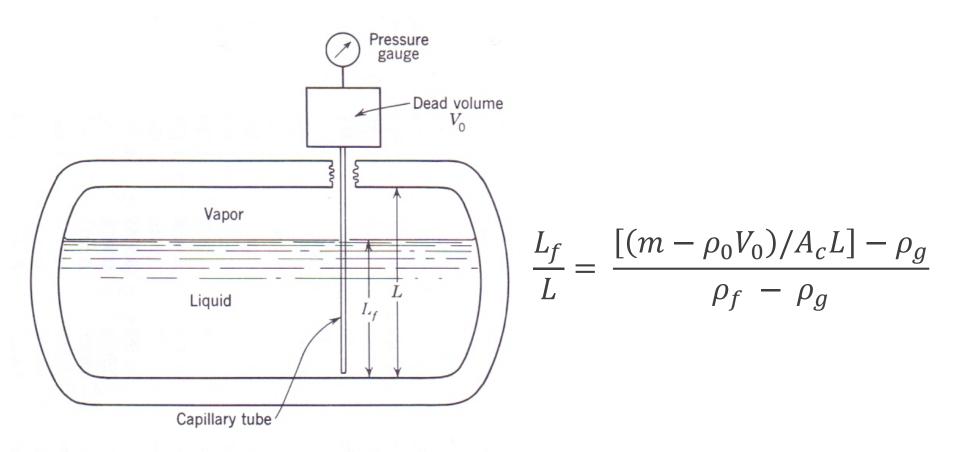


Fig. 6.17. Thermodynamic liquid-level gauge.