
Minimal faces Faces Polyhedra,

Definition 2.16

If a face F of P has no face among its proper subsets, it is called a minimal
face (�FG�è���).

Proposition 2.17

A minimal face F of P = {x : Ax ≥ b} has a face subsystem whose rank is equal
to r(A): ∃ a subsystem A◦x ≥ b◦ of Ax ≥ b such that F = {x ∈ P : A◦x = b◦}
and r(A◦) = r(A).

Proof: It suffices to show that the maximum face subsystem A◦x ≥ b◦ of F has

rank r(A◦) = r(A). Suppose on the contrary r(A◦) < r(A). Then there is a

constraint ai′
T x ≥ bi′ not in A◦x ≥ b◦ such that r

(
A◦

aT
i′

)
> r(A◦). Since

A◦x = b◦ has a solution, the augmented system A◦x = b◦, aT
i′x = bi′ also has a

solution. Let x′ be any solution of the augmented system.
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Minimal faces Faces Polyhedra,

Proof(cont’d):
Case 1 x′ ∈ P : Then F ′ = {x ∈ P : A◦x = b◦, aT

i′x = bi′} is nonempty and
hence a face. Since A◦x ≥ b◦ is the maximum subsystem of F , F also has a
point satisfying ai′

T x > bi′ . Thus F ′ ( F . A contradiction.

Case 2 x′ /∈ P : Let y be any point of P . Then the line segment from y to x′,
there is the last point z ∈ P . Since the whole line is contained affine set
A◦x = b◦, there is a blocking constraint aT

i′′x ≥ bi′′ not from A◦x ≥ b◦ such that
aT

i′′z = bi′′ . Since aT
i′′y > bi′′ , similarly with Case 1, F ′ = {x ∈ P : A◦x = b◦,

aT
i′′x = bi′′} is a face of P such that F ′ ( F . A contradiction.

In the proof, if the maximum subsystem A◦x = b◦ of a face F has at the same
time the points of P and not of P , then F has a face F ′ which is a proper subset
of F . Thus if F is a minimal face, other constraints are all valid inequalities for
{x : A◦x = b◦}. Therefore, we have

F =
{
x ∈ P : A◦x = b◦

}
=

{
x : A◦x = b◦

}
. (2.1)
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Minimal faces Faces Polyhedra,

In the proof of Proposition 2.17, we assumed A◦x ≥ b◦ is the maximum
face subsystem of F . But from (2.1), for any subsystem of A◦x ≥ b◦ with
the same rank has the corresponding affine set equal to F .

Corrolary 2.18

Every minimal face is an affine set with the dimension n− r(A).

Exercise 2.19

If a minimal face of P is a point, then every minimal face is also a point
which is a unique solution of A◦x = b◦ where A◦x ≥ b◦ is a subsystem
with r(A◦) = n.
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Vertices Faces Polyhedra,

The figure shows an extreme point or vertex of a 3-dimensional polyhedron. It
has the following features.

First, it is a geometrically protruded point; it can not be in the middle of
any two distinct points of P .

Second, it is a face whose dimension is 0. More specifically, from Exercise
2.19, it is a unique point satisfying with equality a subsystem A◦x ≥ b◦ such
that r(A◦) = n. In the above example, the vertex is a unique point at which
a full rank subsystem of three inequalities is satisfied with equality.

The two are actually equivalent.
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Vertices Faces Polyhedra,

Definition 2.20

A point x◦ of P = {x : Ax ≥ b} (A ∈ Rm×n) is called a vertex of P if it is not
strictly between two end points of a line segment included in P , namely, if x◦

= (1− λ)y + λz for some 0 < λ < 1 and y, z ∈ P , then y = z (= x).
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Vertices Faces Polyhedra,

Proposition 2.21

A point x◦ of P = {x : Ax ≥ b} is a vertex if and only if it is a
0-dimensional (minimal) face of P . In other words, x◦ is a vertex of P if
and only if it is the solution of the equality system of some subsystem
A◦x ≥ b◦ with r(A◦) = n.

Proof : (⇒) Let x◦ be a vertex of P and let A◦x ≥ b◦ be the subsystem
of consraints satisfied with equality by x◦. Then since x◦ satisfies other
constraints with >, there is ε > 0 such that every point of Bε(x◦) also
satisfies them.
Why r(A◦) = n? If r(A◦) < n, A◦x = b◦ has a point y◦ distinct from x◦

and the line passing through the two points lie in the affine set A◦x = b◦.
Therefore, the intersection of the line and Bε(x◦) is a line segment
contained in P . Let the two end points be u and v. Then u 6= v, u, v ∈ P ,
and x◦ = 1

2u + 1
2v, a contradiction to the assumption that x◦ is a vertex.
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Vertices Faces Polyhedra,

Proof(cont’d):(⇐) Let x◦ be a 0-dimensional face with the face
subsystem A◦x ≥ b◦ with r(A◦) = n. Then x◦ is a unique solution of
A◦x = b◦. Therefore, every point of P distinct from x◦ satisfies at least
one inequality from A◦x ≥ b◦ with >. And so does any strict convex
combination having at least one endpoint not equal to x◦. Thus if x◦ =
(1− λ)y + λz for y, z ∈ P and 0 < λ < 1, then y = z = x◦.
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Vertices Faces Polyhedra,

Lemma 2.22

A bounded polyhedron has a vertex.

Proof: Consider any point x1 ∈ P . Let A1x ≥ b1x1 be the subsystem of
constraints that are satisfied by x1 with equality. If the r(A1) = n, we are
done.

Otherwise, the system A1x = b1 has a solution y1 distinct from x1. Since
P is bounded, for any line from x1 to y1, there is a blocking constraint,
say, aT

i′ x ≥ bi′ . Let z1 be the last point of P on the line so that aT
i′ x ≥ bi′ .

Note that ai′ increases the rank of A1. (For otherwise the solution set of
the augmented system is the same as that of A1x = b1 or empty, neither
of which is the case.)
If r(A2) = n, z1 is a vertex. Otherwise, setting x2 = z1 we repeat to
compute y2 and z2 and so on. Since the rank of the system strictly
increases each time, xk will be a vertex for some k ≤ n.
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Vertices Faces Polyhedra,

Proposition 2.23
A bounded polyhedron is the convex hull of its vertices.

Proof: Let x1, . . . , xK be the vertices of P and Q = conv.{x1, . . . , xK}.
(P ⊇ Q) Clear since P is convex.

(P ⊆ Q) Let x1 be any element of P and A1x ≥ b1 the active constraints.
If r(A1) = n, x1 is a vertex and we are done. Otherwise as in Lemma
2.22, we consider a half line in {x| A1x ≥ b1 and passing through x1. Let
the last point of P on the line be z1. Similarly, let the last point of P in
the half line from x in the opposite direction be w1. Then x is a convex
combination of z1 and w1. Hence if z1 and w1 are both vertices of P , we
are done.

Otherwise, we repeat the procedure after setting x2 = z1 or x2 = w1 (or
both). Then every branch of the procedure will terminate with w or z that
is a vertex. Since a convex combination of convex combinations of vertices
is a convex combination of vertices, we have the proposition.
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Vertices Faces Polyhedra,

Exercise 2.24

Consider the following dual problem.

max −4y1 +2y3 −2y4

s.t. −2y1 +2y3 = 5
4y1 +y2 +y3 −y4 = 6
y1, y2, y3, y4 ≥ 0

y∗ = [0,−7
2 , 5

2 , 0]T is an optimal solution with objective value 5.

(1) Let P = {x : Ax ≥ b} be the polyhedron of the primal problem.
Show F = {x ∈ P : 5x1 + 6x2 = 5} is a face P .

(2) Find a face subsystem A◦x ≥ b◦ of F .
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Vertices Faces Polyhedra,

Exercise 2.25

Find a vertex of the following polyhedron starting with x1 = [2 2 2]T .

x1 +2x2 +x3 ≥ 3
x1 −x3 ≤ 1

x3 ≤ 4
x1 +x2 +x3 ≥ 6
x1 ≥ 0

x2 ≥ 0
x3 ≥ 0

Exercise 2.26

Find a vertex of the polyhedron starting with x1 = [ 12
1
2

9
2 6]T .

3x1 +2x2 −x3 +x4 = 4
2x1 −x2 +x3 = 5

x1 ≥ 0 x2 ≥ 0 x3 ≥ 0 x4 ≥ 0
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Vertices Faces Polyhedra,

Exercise 2.27

Suppose LP minimizing cT x overP = {Ax ≥ b} has an optimal solution.
Discuss how to find an optimal solution which is a vertex.

Proposition 2.23 implies that if the feasible solution set is bounded, it
suffices to an optimal vertex. In fact it also applies to an LP with a
polyhedron not necessarily bounded.

Exercise 2.28

If LP min{cT x|Ax ≥ b} has an optimal set and a vertex of its polyhedron,
an optimal solution is attained at a vertex, i.e. there is a vertex which is an
optimal solution.

Hint: Consider the face of optimal solutions. Recall that a minimal face is
affine.
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Vertices Faces Polyhedra,

Exercise 2.29

Prove or disprove by a counterexample.

(1) If P = {x : Ax ≥ b} (A ∈ Rm×n) has a vertex, R(A) is Rn.

(2) A bounded polyhedron has a facet.

(3) A minimal representation of a polyhedron P is unique up to a positive
multiplication.

(4) If a polyhedron does not have a vertex, it has no facet.

(5) If a polyhedron is not full-dimensional, it is a face of itself.

(6) If a polyhedron has no facet, it is not full-dimensional.

(7) The converse of (6).
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Vertices Faces Polyhedra,

Exercise 2.30

Consider the polyhedron whose linear system description is as follows:

x1 +2x2 +x3 ≥ 3
x1 −x3 ≤ 1

x3 ≤ 4
x1 +x2 +x3 ≥ 6
x1 ≥ 0

x2 ≥ 0
x3 ≥ 0

(1) Show x◦ = (1, 5, 0)T is a vertex of the polyhedron.

(2) How many facets does P have and why.
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Wely-Minkowski Theorem Polyhedra,

Recall the sum of two sets S, T ⊆ Rn is defined as S + T =
{s + t : s ∈ S, t ∈ T}. Then a half-line L+ = {x + λy : λ ≥ 0} is the sum
of {x} and the set {λy : λ ≥ 0}.
The set {λy : λ ≥ 0} is closed in nonnegative multiplication.

Definition 3.1

We call a set cone (Þ�¦) if it closed in nonnegative multiplication.
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Wely-Minkowski Theorem Polyhedra,

By a cone, we normally mean a cone which is convex as well. And it is not
difficult to prove the following proposition.

Proposition 3.2

A set K ⊆ Rn is a convex cone if it is closed in nonnegative linear
combination or conic combination: ∀ x, y ∈ K and ∀λ, µ ≥ 0,
λx + µy ∈ K.

The conic combination also can be extended to a finite number of vectors.
Similarly we can define conic hull of a set S to be the smallest cone
including S as a subset. Also, then we can show the conic hull of S is the
set of conic combinations of vectors from S.
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Wely-Minkowski Theorem Polyhedra,

Definition 3.3

If a convex cone K is a conic hull of a finite set of vectors {y1, . . ., yk}

K = cone{y1, . . . , yk} = {λ1y
1 + · · ·+ λky

k : λ1 ≥ 0, . . . , λk ≥ 0},

then K is said to be a finitely generated cone.

Figure: Cone, convex cone and finitely generated cone.
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Wely-Minkowski Theorem Polyhedra,

Definition 3.4

For any matrix A ∈ Rm×n, the polyhedron K = {y : Ay ≥ 0} is a
convex cone by Proposition 3.2. We call K a polyhedral cone.

Proposition 3.5

Minkowski’s theorem: Every polyhedral cone is finitely generated.

Proof: Any vector y of K = {y : Ay ≥ 0} can be scaled down to be
contained in a unit hypercube centered at the origin. Hence every y ∈ K is
a positive multiplication of a vector from K̄ = {y : Ay ≥ 0, −e ≤ y ≤ e}.
Since K̄ is bounded, it is the convex hull of its finite number of vertices. It
implies K = {y : Ay ≥ 0} is the conic hull of the vertices of K̄, and hence
finitely generated.
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Wely-Minkowski Theorem Polyhedra,

If a polyhedron P = {x : Ax ≥ b} includes a half line x + λy, then we
should have Ay ≥ 0. Conversely, if Ay ≥ 0, then for any x ∈ P , the half
line x + λy is included in P . It suggests the following proposition.

Proposition 3.6

Every polyhedron P = {x : Ax ≥ b} is the sum of a bounded polyhedron
and a polyhedral cone. In other words, there is a finite set of vectors {x1,
x2, . . ., xp} and {y1, y2, . . ., yq} such that for any x ∈ P , there are λ and
µ such that

x = λ1x
1 + λ2x

2 + · · ·+ λpx
p + µ1y

1 + µ2y
2 + · · ·+ µqy

q,

λ1 + λ2 + · · ·+ λp = 1, λ1 ≥ 0, λ2 ≥ 0, · · · , λp ≥ 0, (3.2)

µ1 ≥ 0, µ2 ≥ 0, · · · , µq ≥ 0.
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