Definition 2.16

If a face F of P has no face among its proper subsets, it is called a *minimal* face (극소면).

Proposition 2.17

A minimal face F of $P = \{x : Ax \ge b\}$ has a face subsystem whose rank is equal to r(A): \exists a subsystem $A^{\circ}x \ge b^{\circ}$ of $Ax \ge b$ such that $F = \{x \in P : A^{\circ}x = b^{\circ}\}$ and $r(A^{\circ}) = r(A)$.

Proof: It suffices to show that the maximum face subsystem $A^{\circ}x \ge b^{\circ}$ of F has rank $r(A^{\circ}) = r(A)$. Suppose on the contrary $r(A^{\circ}) < r(A)$. Then there is a constraint $a_{i'}{}^Tx \ge b_{i'}$ not in $A^{\circ}x \ge b^{\circ}$ such that $r\begin{pmatrix} A^{\circ} \\ a_{i'}^T \end{pmatrix} > r(A^{\circ})$. Since $A^{\circ}x = b^{\circ}$ has a solution, the augmented system $A^{\circ}x = b^{\circ}$, $a_{i'}{}^Tx = b_{i'}$ also has a solution. Let x' be any solution of the augmented system.

◆□ > ◆□ > ◆臣 > ◆臣 > □ = ○ ○ ○ ○

Proof(*cont'd*):

Case 1 $x' \in P$: Then $F' = \{x \in P : A^{\circ}x = b^{\circ}, a_{i'}^T x = b_{i'}\}$ is nonempty and hence a face. Since $A^{\circ}x \ge b^{\circ}$ is the maximum subsystem of F, F also has a point satisfying $a_{i'}^T x > b_{i'}$. Thus $F' \subsetneq F$. A contradiction.

Case 2 $x' \notin P$: Let y be any point of P. Then the line segment from y to x', there is the last point $z \in P$. Since the whole line is contained affine set $A^{\circ}x = b^{\circ}$, there is a blocking constraint $a_{i''}^T x \ge b_{i''}$ not from $A^{\circ}x \ge b^{\circ}$ such that $a_{i''}^T z = b_{i''}$. Since $a_{i''}^T y > b_{i''}$, similarly with Case 1, $F' = \{x \in P : A^{\circ}x = b^{\circ}, a_{i''}^T x = b_{i''}\}$ is a face of P such that $F' \subsetneq F$. A contradiction. \Box

In the proof, if the maximum subsystem $A^{\circ}x = b^{\circ}$ of a face F has at the same time the points of P and not of P, then F has a face F' which is a proper subset of F. Thus if F is a minimal face, other constraints are all valid inequalities for $\{x : A^{\circ}x = b^{\circ}\}$. Therefore, we have

$$F = \{x \in P : A^{\circ}x = b^{\circ}\} = \{x : A^{\circ}x = b^{\circ}\}.$$
(2.1)

◆□ > ◆□ > ◆臣 > ◆臣 > □ = ○ ○ ○ ○

In the proof of Proposition 2.17, we assumed $A^{\circ}x \ge b^{\circ}$ is the maximum face subsystem of F. But from (2.1), for any subsystem of $A^{\circ}x \ge b^{\circ}$ with the same rank has the corresponding affine set equal to F.

Corrolary 2.18

Every minimal face is an affine set with the dimension n - r(A).

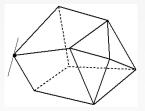
Exercise 2.19

If a minimal face of P is a point, then every minimal face is also a point which is a unique solution of $A^{\circ}x = b^{\circ}$ where $A^{\circ}x \ge b^{\circ}$ is a subsystem with $r(A^{\circ}) = n$.

3

ヘロト ヘヨト ヘヨト ヘヨト

The figure shows an extreme point or vertex of a 3-dimensional polyhedron. It has the following features.



First, it is a geometrically protruded point; it can not be in the middle of any two distinct points of P.

Second, it is a face whose dimension is 0. More specifically, from Exercise 2.19, it is a unique point satisfying with equality a subsystem $A^{\circ}x \ge b^{\circ}$ such that $r(A^{\circ}) = n$. In the above example, the vertex is a unique point at which a full rank subsystem of three inequalities is satisfied with equality.

The two are actually equivalent.

э

・ロト ・回ト ・ヨト ・ヨト

Definition 2.20

A point x° of $P = \{x : Ax \ge b\}$ $(A \in \mathbb{R}^{m \times n})$ is called a *vertex* of P if it is not strictly between two end points of a line segment included in P, namely, if $x^{\circ} = (1 - \lambda)y + \lambda z$ for some $0 < \lambda < 1$ and $y, z \in P$, then y = z (= x).

ヘロト ヘヨト ヘヨト ヘヨト

Proposition 2.21

A point x° of $P = \{x : Ax \ge b\}$ is a vertex if and only if it is a 0-dimensional (minimal) face of P. In other words, x° is a vertex of P if and only if it is the solution of the equality system of some subsystem $A^{\circ}x \ge b^{\circ}$ with $r(A^{\circ}) = n$.

Proof : (\Rightarrow) Let x° be a vertex of P and let $A^{\circ}x \ge b^{\circ}$ be the subsystem of constraints satisfied with equality by x° . Then since x° satisfies other constraints with >, there is $\epsilon > 0$ such that every point of $B_{\epsilon}(x^{\circ})$ also satisfies them.

Why $r(A^{\circ}) = n$? If $r(A^{\circ}) < n$, $A^{\circ}x = b^{\circ}$ has a point y° distinct from x° and the line passing through the two points lie in the affine set $A^{\circ}x = b^{\circ}$. Therefore, the intersection of the line and $B_{\epsilon}(x^{\circ})$ is a line segment contained in P. Let the two end points be u and v. Then $u \neq v$, $u, v \in P$, and $x^{\circ} = \frac{1}{2}u + \frac{1}{2}v$, a contradiction to the assumption that x° is a vertex.

Proof(*cont'd*):(\Leftarrow) Let x° be a 0-dimensional face with the face subsystem $A^{\circ}x \ge b^{\circ}$ with $r(A^{\circ}) = n$. Then x° is a unique solution of $A^{\circ}x = b^{\circ}$. Therefore, every point of P distinct from x° satisfies at least one inequality from $A^{\circ}x \ge b^{\circ}$ with >. And so does any strict convex combination having at least one endpoint not equal to x° . Thus if $x^{\circ} =$ $(1 - \lambda)y + \lambda z$ for $y, z \in P$ and $0 < \lambda < 1$, then $y = z = x^{\circ}$. \Box

Lemma 2.22

A bounded polyhedron has a vertex.

Proof: Consider any point $x^1 \in P$. Let $A^1x \ge b^1x^1$ be the subsystem of constraints that are satisfied by x^1 with equality. If the $r(A^1) = n$, we are done.

Otherwise, the system $A^1x = b^1$ has a solution y^1 distinct from x^1 . Since P is bounded, for any line from x^1 to y^1 , there is a blocking constraint, say, $a_{i'}^Tx \ge b_{i'}$. Let z^1 be the last point of P on the line so that $a_{i'}^Tx \ge b_{i'}$. Note that $a_{i'}$ increases the rank of A^1 . (For otherwise the solution set of the augmented system is the same as that of $A^1x = b^1$ or empty, neither of which is the case.)

If $r(A^2) = n$, z^1 is a vertex. Otherwise, setting $x^2 = z^1$ we repeat to compute y^2 and z^2 and so on. Since the rank of the system strictly increases each time, x^k will be a vertex for some $k \leq n$. \Box

・ロト ・回 ト ・ヨト ・ヨト - ヨー

Proposition 2.23

A bounded polyhedron is the convex hull of its vertices.

Proof: Let x^1, \ldots, x^K be the vertices of P and $Q = \text{conv.}\{x^1, \ldots, x^K\}$. $(P \supseteq Q)$ Clear since P is convex.

 $(P \subseteq Q)$ Let x^1 be any element of P and $A^1x \ge b^1$ the active constraints. If $r(A^1) = n$, x^1 is a vertex and we are done. Otherwise as in Lemma 2.22, we consider a half line in $\{x \mid A^1x \ge b^1 \text{ and passing through } x^1$. Let the last point of P on the line be z^1 . Similarly, let the last point of P in the half line from x in the opposite direction be w^1 . Then x is a convex combination of z^1 and w^1 . Hence if z^1 and w^1 are both vertices of P, we are done.

Otherwise, we repeat the procedure after setting $x^2 = z^1$ or $x^2 = w^1$ (or both). Then every branch of the procedure will terminate with w or z that is a vertex. Since a convex combination of convex combinations of vertices is a convex combination of vertices, we have the proposition. \Box

Consider the following dual problem.

\max	$-4y_1$		$+2y_{3}$	$-2y_4$		
s.t.	$-2y_{1}$		$+2y_{3}$		=	5
	$4y_1$	$+y_{2}$	$+y_{3}$	$-y_4$	=	6
	$y_1,$	$y_2,$	$y_3,$	y_4	\geq	0

 $y^* = [0, -\frac{7}{2}, \frac{5}{2}, 0]^T \text{ is an optimal solution with objective value 5.}$ (1) Let $P = \{x : Ax \ge b\}$ be the polyhedron of the primal problem. Show $F = \{x \in P : 5x_1 + 6x_2 = 5\}$ is a face P.

(2) Find a face subsystem $A^{\circ}x \ge b^{\circ}$ of F.

3

Find a vertex of the following polyhedron starting with $x^1 = \begin{bmatrix} 2 & 2 \end{bmatrix}^T$.

x_1	$+2x_{2}$	$+x_3$	≥ 3
x_1		$-x_3$	≤ 1
		x_3	≤ 4
x_1	$+x_{2}$	$+x_{3}$	≥ 6
x_1			≥ 0
	x_2		≥ 0
		x_3	≥ 0

Exercise 2.26

Find a vertex of the polyhedron starting with $x^1 = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{9}{2} & 6 \end{bmatrix}^T$.

э

イロン 不得と イヨン イヨン

Suppose LP minimizing $c^T x$ over $P = \{Ax \ge b\}$ has an optimal solution. Discuss how to find an optimal solution which is a vertex.

Proposition 2.23 implies that if the feasible solution set is bounded, it suffices to an optimal vertex. In fact it also applies to an LP with a polyhedron not necessarily bounded.

Exercise 2.28

If $LP \min\{c^T x | Ax \ge b\}$ has an optimal set and a vertex of its polyhedron, an optimal solution is attained at a vertex, i.e. there is a vertex which is an optimal solution.

Hint: Consider the face of optimal solutions. Recall that a minimal face is affine.

ヘロト ヘヨト ヘヨト ヘヨト

Prove or disprove by a counterexample.

(1) If $P = \{x : Ax \ge b\}$ $(A \in \mathbb{R}^{m \times n})$ has a vertex, R(A) is \mathbb{R}^n .

- (2) A bounded polyhedron has a facet.
- (3) A minimal representation of a polyhedron P is unique up to a positive multiplication.
- (4) If a polyhedron does not have a vertex, it has no facet.
- (5) If a polyhedron is not full-dimensional, it is a face of itself.
- (6) If a polyhedron has no facet, it is not full-dimensional.
- (7) The converse of (6).

3

イロン 不同 とくほう イヨン

Consider the polyhedron whose linear system description is as follows:

x_1	$+2x_{2}$	$+x_3$	≥ 3
x_1		$-x_3$	≤ 1
		x_3	≤ 4
x_1	$+x_{2}$	$+x_{3}$	≥ 6
x_1			≥ 0
	x_2		≥ 0
		x_3	≥ 0

Show x° = (1,5,0)^T is a vertex of the polyhedron.
 How many facets does P have and why.

э

Recall the sum of two sets $S, T \subseteq \mathbb{R}^n$ is defined as $S + T = \{s+t: s \in S, t \in T\}$. Then a half-line $L^+ = \{x + \lambda y : \lambda \ge 0\}$ is the sum of $\{x\}$ and the set $\{\lambda y : \lambda \ge 0\}$.

The set $\{\lambda y : \lambda \ge 0\}$ is closed in nonnegative multiplication.

Definition 3.1

We call a set cone (B) if it closed in nonnegative multiplication.

3

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

By a cone, we normally mean a cone which is convex as well. And it is not difficult to prove the following proposition.

Proposition 3.2

A set $K \subseteq \mathbb{R}^n$ is a convex cone if it is closed in nonnegative linear combination or conic combination: $\forall x, y \in K$ and $\forall \lambda, \mu \ge 0$, $\lambda x + \mu y \in K$.

The conic combination also can be extended to a finite number of vectors. Similarly we can define conic hull of a set S to be the smallest cone including S as a subset. Also, then we can show the conic hull of S is the set of conic combinations of vectors from S.

Polyhedra,

Definition 3.3

If a convex cone K is a conic hull of a finite set of vectors $\{y^1, \ldots, y^k\}$

$$K = \operatorname{cone}\{y^1, \dots, y^k\} = \{\lambda_1 y^1 + \dots + \lambda_k y^k : \lambda_1 \ge 0, \dots, \lambda_k \ge 0\},\$$

then K is said to be a *finitely generated cone*.

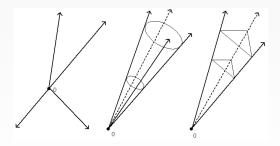


Figure: Cone, convex cone and finitely generated cone.

э

・ロト ・回ト ・ヨト ・ヨト

Definition 3.4

For any matrix $A \in \mathbb{R}^{m \times n}$, the polyhedron $K = \{y : Ay \ge 0\}$ is a convex cone by Proposition 3.2. We call K a polyhedral cone.

Proposition 3.5

Minkowski's theorem: Every polyhedral cone is finitely generated.

Proof: Any vector y of $K = \{y : Ay \ge 0\}$ can be scaled down to be contained in a unit hypercube centered at the origin. Hence every $y \in K$ is a positive multiplication of a vector from $\overline{K} = \{y : Ay \ge 0, -e \le y \le e\}$. Since \overline{K} is bounded, it is the convex hull of its finite number of vertices. It implies $K = \{y : Ay \ge 0\}$ is the conic hull of the vertices of \overline{K} , and hence finitely generated. \Box

3

Polyhedra,

If a polyhedron $P = \{x : Ax \ge b\}$ includes a half line $x + \lambda y$, then we should have $Ay \ge 0$. Conversely, if $Ay \ge 0$, then for any $x \in P$, the half line $x + \lambda y$ is included in P. It suggests the following proposition.

Proposition 3.6

Every polyhedron $P = \{x : Ax \ge b\}$ is the sum of a bounded polyhedron and a polyhedral cone. In other words, there is a finite set of vectors $\{x^1, x^2, \ldots, x^p\}$ and $\{y^1, y^2, \ldots, y^q\}$ such that for any $x \in P$, there are λ and μ such that

$$x = \lambda_1 x^1 + \lambda_2 x^2 + \dots + \lambda_p x^p + \mu_1 y^1 + \mu_2 y^2 + \dots + \mu_q y^q, \lambda_1 + \lambda_2 + \dots + \lambda_p = 1, \ \lambda_1 \ge 0, \ \lambda_2 \ge 0, \ \dots, \ \lambda_p \ge 0, \mu_1 \ge 0, \ \mu_2 \ge 0, \ \dots, \ \mu_q \ge 0.$$
(3.2)

3