Minimal faces Pobyhedra.

Definition 2.16

If a face F' of P has no face among its proper subsets, it is called a minimal
face (Z4H).

Proposition 2.17

A minimal face F of P = {x : Az > b} has a face subsystem whose rank is equal
to r(A): 3 a subsystem A°x > b° of Ax > b such that F = {x € P: A°x = b°}
and r(A°) =r(A).

Proof: It suffices to show that the maximum face subsystem A°x > b° of F' has
rank r(A°) = r(A). Suppose on the contrary r(A°) < r(A). Then there is a

. . A° .

constraint ayTx > by not in A°z > b° such that r ( i, > r(A°). Since
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A°z = b° has a solution, the augmented system A°x = b°, a;,x = b; also has a

solution. Let x’ be any solution of the augmented system.
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Proof (cont'd):
Case 1 2’ € P: Then F/ = {z € P: A°z = 1°, alx = by} is nonempty and

hence a face. Since A°x > b° is the maximum subsystem of F', F also has a
point satisfying a;*x > by. Thus F/ C F. A contradiction.

Case 2 2’ ¢ P: Let y be any point of P. Then the line segment from y to «/,
there is the last point z € P. Since the whole line is contained affine set

A°x = b°, there is a blocking constraint aiT,,x > b not from A°x > b° such that
ag:,z = b;». Since aiT,,y > by, similarly with Case 1, F' = {z € P: A°x = b°,
al,x = by} is a face of P such that F/ C F. A contradiction. [

In the proof, if the maximum subsystem A°x = b° of a face F' has at the same
time the points of P and not of P, then F has a face F’ which is a proper subset
of F'. Thus if F'is a minimal face, other constraints are all valid inequalities for
{z: A°xz = b°}. Therefore, we have

F={zeP:Az=b}={z: Az =1} (2.1)
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In the proof of Proposition 2.17, we assumed A°z > b° is the maximum
face subsystem of F'. But from (2.1), for any subsystem of A°z > b° with
the same rank has the corresponding affine set equal to F'.

Corrolary 2.18

Every minimal face is an affine set with the dimension n — r(A).

Exercise 2.19

If a minimal face of P is a point, then every minimal face is also a point
which is a unique solution of A°x = b° where A°x > b° is a subsystem
with r(A°) = n.




vertices Pobyhedra.

The figure shows an extreme point or vertex of a 3-dimensional polyhedron. It

has the following features.

First, it is a geometrically protruded point; it can not be in the middle of
any two distinct points of P.

Second, it is a face whose dimension is 0. More specifically, from Exercise
2.19, it is a unique point satisfying with equality a subsystem A°x > b° such
that 7(A°) = n. In the above example, the vertex is a unique point at which
a full rank subsystem of three inequalities is satisfied with equality.

The two are actually equivalent.
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Definition 2.20

A point x° of P = {x: Ax > b} (A € R™*") is called a vertex of P if it is not
strictly between two end points of a line segment included in P, namely, if x°
=(1-=XNy+ Az for some 0 < A <1andy, z € P, then y = z (= x).
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Proposition 2.21

A point z° of P = {x : Ax > b} is a vertex if and only if it is a
O-dimensional (minimal) face of P. In other words, z° is a vertex of P if
and only if it is the solution of the equality system of some subsystem
A°x > b° with r(A°) = n.

Proof : (=) Let 2° be a vertex of P and let A°x > b° be the subsystem
of consraints satisfied with equality by z°. Then since x° satisfies other
constraints with >, there is € > 0 such that every point of B.(z°) also
satisfies them.

Why r(A°) = n? If r(A°) < n, A°x = b° has a point y° distinct from z°
and the line passing through the two points lie in the affine set A°x = b°.
Therefore, the intersection of the line and B(z°) is a line segment
contained in P. Let the two end points be v and v. Then u # v, u, v € P,
and z° = %u + %U, a contradiction to the assumption that x° is a vertex.
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Proof(cont’'d):(<=) Let 2° be a 0-dimensional face with the face
subsystem A°x > b° with r(A°) = n. Then z° is a unique solution of
A°x = b°. Therefore, every point of P distinct from x° satisfies at least
one inequality from A°z > b° with >. And so does any strict convex

combination having at least one endpoint not equal to z°. Thus if 2° =
(I1=XNy+ Azfory,z€e Pand0< A <1,theny=2=2° 0O



vertices Pobyhedra.

Lemma 2.22
A bounded polyhedron has a vertex.

Proof: Consider any point ' € P. Let Az > b'z! be the subsystem of
constraints that are satisfied by 2! with equality. If the r(A') = n, we are
done.

Otherwise, the system Alz = b' has a solution y' distinct from . Since
P is bounded, for any line from z! to 3!, there is a blocking constraint,
say, aiT/x > b;s. Let z! be the last point of P on the line so that a?m > b
Note that a; increases the rank of A'. (For otherwise the solution set of
the augmented system is the same as that of A'z = b' or empty, neither
of which is the case.)

If 7(A%) = n, 2! is a vertex. Otherwise, setting 72 = 2! we repeat to
compute y? and z? and so on. Since the rank of the system strictly
increases each time, * will be a vertex for some k < n. [

1



vertices Pobyhedra.

Proposition 2.23
A bounded polyhedron is the convex hull of its vertices.

Proof: Let !, ..., 2% be the vertices of P and Q = conv.{z!, ..., z&}.
(P 2 Q) Clear since P is convex.

(P C Q) Let x! be any element of P and A'z > b! the active constraints.
If 7(A') = n, 2! is a vertex and we are done. Otherwise as in Lemma
2.22, we consider a half line in {z| Alx > b' and passing through z!. Let
the last point of P on the line be z!. Similarly, let the last point of P in
the half line from xin the opposite direction be w!. Then z is a convex
combination of z! and w!. Hence if 2! and w! are both vertices of P, we
are done.

Otherwise, we repeat the procedure after setting 22 = 2! or 22 = w! (or

both). Then every branch of the procedure will terminate with w or z that
is a vertex. Since a convex combination of convex combinations of vertices
is a convex combination of vertices, we have the proposition. [J
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Exercise 2.24
Consider the following dual problem.

max —4y +2ys —2y4

st —2un +2y3 = 5
dy1 +y2  +ys —ya = 6
Y1, Y2, Ys, Y4 > 0

y* =0, —%, %, 0]” is an optimal solution with objective value 5.
(1) Let P ={x: Az > b} be the polyhedron of the primal problem.

Show F = {x € P : 5x1 + 6xy = 5} is a face P.
(2) Find a face subsystem A°x > b° of F'.




Vertices

Exercise 2.25
Find a vertex of the following polyhedron starting with x* = [2 2 2]T".
xr1 +2x9 4x3 >3
I —x3 S 1
I3 S 4
X +x9 -I-.’L'g Z 6
X Z 0
T9 Z 0
I3 Z 0
Exercise 2.26
. . o1 (119 T
Find a vertex of the polyhedron starting with x' =[5 5 5 6]".
le +2I2 —XI3 +x4 =4
QLBl —X2 +x3 =5
21 2>0 2020 23>0 24>0
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Exercise 2.27

Suppose LP minimizing ¢"x overP = {Ax > b} has an optimal solution.
Discuss how to find an optimal solution which is a vertex.

Proposition 2.23 implies that if the feasible solution set is bounded, it
suffices to an optimal vertex. In fact it also applies to an LP with a
polyhedron not necessarily bounded.

Exercise 2.28

If LP min{cTx|Ax > b} has an optimal set and a vertex of its polyhedron,
an optimal solution is attained at a vertex, i.e. there is a vertex which is an
optimal solution.

Hint: Consider the face of optimal solutions. Recall that a minimal face is
affine.
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Exercise 2.29

Prove or disprove by a counterexample.

(1) IfP={x: Az > b} (A € R™*™) has a vertex, R(A) is R™.
(2) A bounded polyhedron has a facet.

(3) A minimal representation of a polyhedron P is unique up to a positive
multiplication.

4) If a polyhedron does not have a vertex, it has no facet.

6) If a polyhedron has no facet, it is not full-dimensional.
7) The converse of (6).

(4)
(5) If a polyhedron is not full-dimensional, it is a face of itself.
(6)
(7)
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Exercise 2.30
Consider the polyhedron whose linear system description is as follows:

1 +2x0 4x3 >3

X1 —xr3 <1
I3 S 4

ry +a2 +x3 >6
I Z 0
D) > 0

z3 >0

(1) Show z° = (1,5,0)T is a vertex of the polyhedron.
(2) How many facets does P have and why.




Wely-Minkowski Theorem Polyhedra,

Recall the sum of two sets S, T' C R" is defined as S + 1 =
{s+t:s€S,teT} Thena half-ine LT = {z+ Ay : X\ > 0} is the sum
of {x} and the set {\y : A\ > 0}.

The set {\y : A > 0} is closed in nonnegative multiplication.

Definition 3.1
We call a set cone (2) if it closed in nonnegative multiplication.
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By a cone, we normally mean a cone which is convex as well. And it is not
difficult to prove the following proposition.

Proposition 3.2

A set K C R" is a convex cone if it is closed in nonnegative linear
combination or conic combination: ¥ x, y € K and VA, u > 0,
Ar+py € K.

The conic combination also can be extended to a finite number of vectors.
Similarly we can define conic hull of a set S to be the smallest cone
including S as a subset. Also, then we can show the conic hull of S is the
set of conic combinations of vectors from S.
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Definition 3.3

If a convex cone K is a conic hull of a finite set of vectors {y!, ..., y*}
chone{yl7"'7yk}:{Alyl—i_'”—’_)‘kyk : )\1 207"'7Ak 20}7

then K is said to be a finitely generated cone.

Figure: Cone, convex cone and finitely generated cone.
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Definition 3.4

For any matrix A € R™*" the polyhedron K = {y: Ay >0} is a
convex cone by Proposition 3.2. We call K a polyhedral cone.

Proposition 3.5

Minkowski’s theorem: Every polyhedral cone is finitely generated.

Proof: Any vector y of K = {y : Ay > 0} can be scaled down to be
contained in a unit hypercube centered at the origin. Hence every y € K is
a positive multiplication of a vector from K = {y: Ay >0, —e <y < e}.
Since K is bounded, it is the convex hull of its finite number of vertices. It
implies K = {y : Ay > 0} is the conic hull of the vertices of K, and hence
finitely generated. O
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If a polyhedron P = {x : Az > b} includes a half line  + Ay, then we
should have Ay > 0. Conversely, if Ay > 0, then for any z € P, the half
line z + Ay is included in P. It suggests the following proposition.

Proposition 3.6

Every polyhedron P = {x : Ax > b} is the sum of a bounded polyhedron
and a polyhedral cone. In other words, there is a finite set of vectors {z?,
x?, ..., 2P} and {y, v?, ..., y?} such that for any x € P, there are \ and
W such that

= Ma' + oz 4+ -+ Ap2P + pyt + pey? + -+ gy,
MA Aot A =1 A 20 A0, -, >0,  (3.2)
M1207 ,U'2207 7#1]20




