
Wely-Minkowski Theorem Polyhedra,

By a cone, we normally mean a cone which is convex as well. And it is not
difficult to prove the following proposition.

Proposition 3.2

A set K ⊆ Rn is a convex cone if it is closed in nonnegative linear
combination or conic combination: ∀ x, y ∈ K and ∀λ, µ ≥ 0,
λx + µy ∈ K.

The conic combination also can be extended to a finite number of vectors.
Similarly we can define conic hull of a set S to be the smallest cone
including S as a subset. Also, then we can show the conic hull of S is the
set of conic combinations of vectors from S.
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Wely-Minkowski Theorem Polyhedra,

Definition 3.3

If a convex cone K is a conic hull of a finite set of vectors {y1, . . ., yk}

K = cone{y1, . . . , yk} = {λ1y
1 + · · ·+ λky

k : λ1 ≥ 0, . . . , λk ≥ 0},

then K is said to be a finitely generated cone.

Figure: Cone, convex cone and finitely generated cone.
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Wely-Minkowski Theorem Polyhedra,

Definition 3.4

For any matrix A ∈ Rm×n, the polyhedron K = {y : Ay ≥ 0} is a
convex cone by Proposition 3.2. We call K a polyhedral cone.

Proposition 3.5

Minkowski’s theorem: Every polyhedral cone is finitely generated.

Proof: Any vector y of K = {y : Ay ≥ 0} can be scaled down to be
contained in a unit hypercube centered at the origin. Hence every y ∈ K is
a positive multiplication of a vector from K̄ = {y : Ay ≥ 0, −e ≤ y ≤ e}.
Since K̄ is bounded, it is the convex hull of its finite number of vertices. It
implies K = {y : Ay ≥ 0} is the conic hull of the vertices of K̄, and hence
finitely generated.
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Wely-Minkowski Theorem Polyhedra,

If a polyhedron P = {x : Ax ≥ b} includes a half line x + λy, then we
should have Ay ≥ 0. Conversely, if Ay ≥ 0, then for any x ∈ P , the half
line x + λy is included in P . It suggests the following proposition.

Proposition 3.6

Every polyhedron P = {x : Ax ≥ b} is the sum of a bounded polyhedron
and a polyhedral cone. In other words, there is a finite set of vectors {x1,
x2, . . ., xp} and {y1, y2, . . ., yq} such that for any x ∈ P , there are λ and
µ such that

x = λ1x
1 + λ2x

2 + · · ·+ λpx
p + µ1y

1 + µ2y
2 + · · ·+ µqy

q,

λ1 + λ2 + · · ·+ λp = 1, λ1 ≥ 0, λ2 ≥ 0, · · · , λp ≥ 0, (3.2)

µ1 ≥ 0, µ2 ≥ 0, · · · , µq ≥ 0.
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Linear programs Linear Programs and Simplex Method

A linear program is an optimization problem of minimizing a real-valued
linear function over a polyhedron:

min/max z= c1x1 +c2x2 · · · +cnxn Objective

sub.to a11x1 +a12x2 · · · +a1nxn =, ≤, ≥ b1 Constraints

a21x1 +a22x2 · · · +a2nxn =, ≤, ≥ b2

...
...

am1x1 +am2x2 · · · +amnxn =, ≤, ≥ bm

Nonnegativity

x1 ≥ 0 x2 ≥ 0 · · · xn ≥ 0, Restrictions

Assumption 1.1

1. We assume bi ≥ 0 for each i (or we can multiply the constraint by −1).

2. We do not lose generality by the sign restriction since any real variable
can be represented as the difference of two nonnegative variables.

Also notice that any LP can be transformed into min{cT x|Ax ≥ b}.
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Linear programs Linear Programs and Simplex Method

By introducing an additional nonnegative variable, each inequality can be
transformed into an equality constraint.

Example 1.2

min z = 3x1 −x2 +2x3

sub.to −x1 +5x2 +2x3 = 5
2x1 −2x2 −x3 ≤ 3
x1 +2x3 ≥ 1

x1 ≥ 0 x2 ≥ 0 x3 ≥ 0.

The second constraint is equivalent to 2x1−2x2 −x3 +x4 = 3, x4 ≥ 0.
I.e. a ≤-inequality constraint amounts to an equality constraint and a
nonnegativity restriction. Similarly, using a nonnegative variable, say
x5, we can transform the third constraint into x1+2x3−x5 = 1, x5 ≥ 0.
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Linear programs Linear Programs and Simplex Method

Example 1.3

And we get the following standard linear program.

min z = 3x1 −x2 +2x3

sub.to −x1 +5x2 +2x3 = 5
2x1 −2x2 −x3 +x4 = 3
x1 +2x3 −x5 = 1

x1 ≥ 0 x2 ≥ 0 x3 ≥ 0 x4 ≥ 0 x5 ≥ 0.

Remark 1.4

Although of no importance, x4 is called a slack variable, and x5 a
surplus variable.
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Linear programs Linear Programs and Simplex Method

Conventionally, LP algorithms assume an LP is given in standard form.

Problem 1.5

min cT x
sub to Ax = b

x ≥ 0
(Standard LP)

As usual A ∈ Rm×n is assumed to have a full row rank m (hence the
equality system has a solution). If a solution also satisfies nonnegativity
restriction, it is called feasible. If LP has no feasible solution, it is said to
be infeasible.

x1 + x2 = −1
x1 ≥ 0 x2 ≥ 0
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Linear programs Linear Programs and Simplex Method

Relying on the primal-dual pair ((3.7) and (3.8) in the previous chapter)
and their weak and strong duality, we can derive the standard dual LP,

Problem 1.6

max bT y
sub to AT y ≤ c

(Standard dual linear program)

and the duality theorems on standard linear programs.

Theorem 1.7

(Weak duality) Every feasible pair (x, y) of (1.5) and (1.6), satisfies cT x
≥ yT b.

Theorem 1.8

(Strong duality) If either (1.5) or (1.6) has an optimal solution, then so
does the other problem and their objective values are the same.
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Basic feasible solutions Linear Programs and Simplex Method

Definition 2.1

If a feasible solution x of (1.5) is a basic solution of Ax = b as well, it is
said to be a basic feasible solution (BFS).

Let B be the basis of a BFS x and xB the the sub-vector of basic variables
(which we assume are ordered to the columns of B). So we have
xB = B−1b ≥ 0. Unlike a basic solution which is guaranteed by
Gauss-Jordan elimination, BFS due to nonnegativity restriction requires a
more elaborated algorithm.

We now see the basic feasible solutions are exactly the vertices of the
polyhedron.

Theorem 2.2

Of a standard LP, its BFSs and vertices are the same thing.
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Basic feasible solutions Linear Programs and Simplex Method

Proof: Let x̄ be a vertex. Since its face
subsystem has rank is n, it includes, besides
Ax = b (whose rank is assumed to be m),
n−m nonnegativity restrictions which are,
we may assume, the last n−m ones. Then
the corresponding n−m variables should be
all 0. And B = [A·1, . . ., A·m] is a basis of
the column space. Since x̄B ≡ (x̄1, . . .,
x̄m)T = B−1b, x̄ is basic. Since x̄ is
feasible. it is a BFS.

Conversely, suppose x̄ is a BFS. We can
reorder, if necessary, the columns of its basis
and add n−m nonnegative restrictions from
nonbasic variables to get the subsystem of
active inequalities of x̄ as in the figure. Its
rank is clearly n and hence x̄ is a vertex.
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Example: Network flow problems Basic feasible solutions Linear Programs and Simplex Method

Consider the following “pipe” network on which the total throughput of 1 flows
from node 1 to node 4.

Let xij be the flow on arc (i, j). Then x is a feasible solution of the following
standard LP. If we remove the last row which is redundant, the equality system
has full-row rank, n− 1.

x12 +x13 = 1
−x12 +x23 +x23 = 0

−x13 −x23 +x34 +x35 = 0
−x24 −x34 −x54 = 1

−x35 +x54 = 0
xij ≥ 0, ∀i, j

(2.1)
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Example: Network flow problems Basic feasible solutions Linear Programs and Simplex Method

The figure indicates two feasible network flows. The left one is not a BFS (why?)
whereas the right one is a BFS of (2.1).

A =


x12 x13 x23 x24 x34 x35 x54

+1 +1 0 0 0 0 0
−1 0 +1 +1 0 0 0

0 −1 −1 0 +1 +1 0
0 0 0 −1 −1 0 −1
0 0 0 0 0 −1 +1

 (2.2)

Its basis consists of A12, A13, A34, A35.
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Algebraic adjacency Adjacent BFSs Linear Programs and Simplex Method

Recall that the optimal solutions constitutes a face F , the intersection of
the polyhedron and the supporting hyperplane determined by the objective
coefficient vector. Since a standard system has rank n, F should contain a
vertex.

Theorem 3.1

An optimal solution of a standard LP is attained at a vertex.

The simplex method searches an optimal BFS by moving from a vertex to
an adjacent vertex of a smaller objective value.

Definition 3.2

We call two BFSs are adjacent if they are adjacent as basic solutions,
namely if the bases of the BFSs have exactly m− 1 columns in
common.
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Geometric adjacency Adjacent BFSs Linear Programs and Simplex Method

Definition 3.3

It two vertices are on the same one-dimensional face, they are said to
be geometrically adjacent (s�Ö�© ���).

A one-dimensional face is called an edge. Thus two vertices are adjacent
iff they are the endpoints of an edge.
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Geometric adjacency Adjacent BFSs Linear Programs and Simplex Method

Theorem 3.4

Two BFSs are adjacent if and only if geometrically adjacent.

Proof: (⇒) Suppose two BFSs, u and v, have the bases B and B′ resp.
with exactly m − 1 columns in common. Then they have exactly
n−m− 1 common nonbasic variables which, along with Ax = b, is a face
subsystem of a face containing both u and v. Since the rank is n− 1, the
face has a dimension at most 1. Since it contains two distinct points u and
v, it is one-dimensional. Therefore u and v are geometrically adjacent.

(⇐) Let x◦ and x◦◦ be the two end points of an edge. Since the
maximum face subsystem of the edge [x◦, x◦◦] has the rank n− 1, it
includes n−m− 1 nonnegativity restrictions xi1 ≥ 0, xi2 ≥ 0, . . .,
xin−m−1 ≥ 0 which increase the rank of Ax = b by n− 1.

Edge [x◦, x◦◦] =
{
x ∈ P : Ax = b, xi1 = · · · = xin−m−1 = 0

}
. (3.3)
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Geometric adjacency Adjacent BFSs Linear Programs and Simplex Method

Proof(cont’d): The line from x◦ to x◦◦ satisfies the subsystem of (3.3).
Hence there should a blocking inequality xr ≥ 0 not from (3.3) which is
satisfied by equality by x◦◦ and increases the rank of subsystem into n.

{x◦◦} =
{
x : Ax = b, xr = 0, xi1 = · · · = xin−m−1 = 0

}
. (3.4)

Therefore, the columns of A corresponding to the remaining variables
constitutes a basis of the BFS x◦◦. (See Figure 2.2.)

Similarly, there is s such that {x◦} = {x : Ax = b, xs = 0, xi1 = · · · =
xin−m−1 = 0}. We have r 6= s. (Why?) Thus x◦ and x◦◦ have exactly
m− 1 columns in common in their bases and thus algebraically adjacent.

From the proof, x◦ and x◦◦ have the basic variable sets {1, . . ., n} \ {s,
i1, . . ., in−m−1} and {1, . . ., n} \ {r, i1, . . ., in−m−1}, respectively. If we
drop xr and enter xs into the basic variables of x◦, we get the adjacent
BFS x◦◦.
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Geometric adjacency Adjacent BFSs Linear Programs and Simplex Method

Exercise 3.5

Consider the following standard linear system and the basic feasible
solution x1 : [4, 1, 0, 0, 0]T .

x1 −2x2 +x3 −x4 +3x5 = 2
+x2 +2x3 +x4 −x5 = 1

x1, x2, x3, x4, x5 ≥ 0

(1) Find the basis of x1. Compute the adjacent BFS x2 obtained by
entering x3 and dropping x2 from the basis.
(2) Are x1 and x2 BFSs? Why?
(3) Are x1 and x2 adjacent? If so, identify the edge.

Optimization Lab. 9th May 2018 15 / 58



Geometric adjacency Adjacent BFSs Linear Programs and Simplex Method

Exercise 3.6

Consider the network flow example and the BFS.
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Geometric adjacency Adjacent BFSs Linear Programs and Simplex Method

We can observe a similar geometrical adjacency of general polyhedron.

Exercise 3.7

x1 −x3 ≤ 1
x3 ≤ 4

x1 +x2 +x3 ≥ 6
x1 ≥ 0

x2 ≥ 0
x3 ≥ 0

(1) Check x◦ = (1, 5, 0)T is a vertex of the polyhedron. Relax the last
inequality of the maximum face subsystem of x◦ to get the face subsystem
of an edge.
(2) Using the edge from (1), find an adjacent vertex x1 to (1, 5, 0)T .
(3) For the objective function 3x1 + 2x2 − x3, is x1 - x◦ an improving
direction? Why?
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Minimum ratio test Linear Programs and Simplex Method

Let x̄ be a basic solution with basis B = [A·1 · · · A·m]. Suppose x̂ is an
adjacent basic solution obtained by entering xs and dropping xr. Recall,
from page 64, Chapter 1, any point on the line segment [x̄, x̂] is

x̄(δ) := x̄ + δ



−B−1A·s
0
...

s ���P:→ 1
...
0


=



B−1b

0
...
0
...
0


+ δ



−B−1A·s
0
...
1
...
0


, (4.5)

for 0 ≤ δ ≤ ∆, where ∆ = (B−1b)r/(B−1A·s)r. Also we have x̂ = x̄(∆).
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