By a cone, we normally mean a cone which is convex as well. And it is not difficult to prove the following proposition.

Proposition 3.2

A set $K \subseteq \mathbb{R}^n$ is a convex cone if it is closed in nonnegative linear combination or conic combination: $\forall x, y \in K$ and $\forall \lambda, \mu \ge 0$, $\lambda x + \mu y \in K$.

The conic combination also can be extended to a finite number of vectors. Similarly we can define conic hull of a set S to be the smallest cone including S as a subset. Also, then we can show the conic hull of S is the set of conic combinations of vectors from S.

Polyhedra,

Definition 3.3

If a convex cone K is a conic hull of a finite set of vectors $\{y^1, \ldots, y^k\}$

$$K = \operatorname{cone}\{y^1, \dots, y^k\} = \{\lambda_1 y^1 + \dots + \lambda_k y^k : \lambda_1 \ge 0, \dots, \lambda_k \ge 0\},\$$

then K is said to be a *finitely generated cone*.

Figure: Cone, convex cone and finitely generated cone.

э

・ロト ・回ト ・ヨト ・ヨト

Definition 3.4

For any matrix $A \in \mathbb{R}^{m \times n}$, the polyhedron $K = \{y : Ay \ge 0\}$ is a convex cone by Proposition 3.2. We call K a polyhedral cone.

Proposition 3.5

Minkowski's theorem: Every polyhedral cone is finitely generated.

Proof: Any vector y of $K = \{y : Ay \ge 0\}$ can be scaled down to be contained in a unit hypercube centered at the origin. Hence every $y \in K$ is a positive multiplication of a vector from $\overline{K} = \{y : Ay \ge 0, -e \le y \le e\}$. Since \overline{K} is bounded, it is the convex hull of its finite number of vertices. It implies $K = \{y : Ay \ge 0\}$ is the conic hull of the vertices of \overline{K} , and hence finitely generated. \Box

3

Polyhedra,

If a polyhedron $P = \{x : Ax \ge b\}$ includes a half line $x + \lambda y$, then we should have $Ay \ge 0$. Conversely, if $Ay \ge 0$, then for any $x \in P$, the half line $x + \lambda y$ is included in P. It suggests the following proposition.

Proposition 3.6

Every polyhedron $P = \{x : Ax \ge b\}$ is the sum of a bounded polyhedron and a polyhedral cone. In other words, there is a finite set of vectors $\{x^1, x^2, \ldots, x^p\}$ and $\{y^1, y^2, \ldots, y^q\}$ such that for any $x \in P$, there are λ and μ such that

$$x = \lambda_1 x^1 + \lambda_2 x^2 + \dots + \lambda_p x^p + \mu_1 y^1 + \mu_2 y^2 + \dots + \mu_q y^q,$$

$$\lambda_1 + \lambda_2 + \dots + \lambda_p = 1, \ \lambda_1 \ge 0, \ \lambda_2 \ge 0, \ \dots, \lambda_p \ge 0,$$

$$\mu_1 \ge 0, \ \mu_2 \ge 0, \ \dots, \mu_q \ge 0.$$
(3.2)

3

Linear Programs and Simplex Method

Optimization Lab.

IE department Seoul National University

9th May 2018

イロト イポト イヨト イヨト

A linear program is an optimization problem of minimizing a real-valued linear function over a polyhedron:

min/max	z =	$c_{1}x_{1}$	$+c_{2}x_{2}$	• • •	$+c_n x_n$			Objective
sub.to		$a_{11}x_1$	$+a_{12}x_2$		$+a_{1n}x_n$	=, \leq , \geq	b_1	Constraints
		$a_{21}x_1$	$+a_{22}x_2$	• • •	$+a_{2n}x_n$	=, \leq , \geq	b_2	
				÷	÷			
		$a_{m1}x_1$	$+a_{m2}x_2$		$+a_{mn}x_n$	$=,\leq,\geq$	b_m	
								Nonnegativity
		$x_1 \ge 0$	$x_2 \ge 0$		$x_n \ge 0$,			Restrictions

Assumption 1.1

1. We assume $b_i \ge 0$ for each i (or we can multiply the constraint by -1). 2. We do not lose generality by the sign restriction since any real variable can be represented as the difference of two nonnegative variables.

Also notice that any LP can be transformed into $\min\{c^T x | Ax \ge b\}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

By introducing an additional nonnegative variable, each inequality can be transformed into an equality constraint.

Example 1.2

\min	z =	$3x_1$	$-x_2$	$+2x_{3}$		
sub.to		$-x_1$	$+5x_{2}$	$+2x_{3}$	=	5
		$2x_1$	$-2x_{2}$	$-x_{3}$	\leq	3
		x_1		$+2x_{3}$	\geq	1
		$x_1 \ge 0$	$x_2 \ge 0$	$x_3 \ge 0.$		

The second constraint is equivalent to $2x_1-2x_2 - x_3 + x_4 = 3$, $x_4 \ge 0$. I.e. a \le -inequality constraint amounts to an equality constraint and a nonnegativity restriction. Similarly, using a nonnegative variable, say x_5 , we can transform the third constraint into $x_1+2x_3-x_5 = 1$, $x_5 \ge 0$.

イロト 不得 とくほと くほとう ほ

Example 1.3

And we get the following standard linear program.

\min	z =	$3x_1$	$-x_{2}$	$+2x_{3}$				
sub.to		$-x_1$	$+5x_{2}$	$+2x_{3}$			=	5
		$2x_1$	$-2x_{2}$	$-x_3$	$+x_4$		=	3
		x_1		$+2x_{3}$		$-x_{5}$	=	1
		$x_1 \ge 0$	$x_2 \ge 0$	$x_3 \ge 0$	$x_4 \ge 0$	$x_5 \ge 0.$		

Remark 1.4

Although of no importance, x_4 is called a slack variable, and x_5 a surplus variable.

Conventionally, LP algorithms assume an LP is given in standard form.

Problem 1.5

$$\begin{array}{rl} \min & c^T x \\ \text{sub to} & Ax &= b \\ & x &\geq 0 \end{array} \tag{Standard LP}$$

As usual $A \in \mathbb{R}^{m \times n}$ is assumed to have a full row rank m (hence the equality system has a solution). If a solution also satisfies nonnegativity restriction, it is called feasible. If LP has no feasible solution, it is said to be infeasible.

$$x_1 + x_2 = -1$$
$$x_1 \ge 0 \ x_2 \ge 0$$

イロン 不同 とくほう イヨン

Relying on the primal-dual pair ((3.7) and (3.8) in the previous chapter) and their weak and strong duality, we can derive the standard dual LP,

Problem 1.6

 $\begin{array}{rcl} \max & b^T y \\ \text{sub to} & A^T y & \leq c \end{array}$

(Standard dual linear program)

イロン 不同 とくほう イヨン

and the duality theorems on standard linear programs.

Theorem 1.7

(Weak duality) Every feasible pair (x, y) of (1.5) and (1.6), satisfies $c^T x \ge y^T b$.

Theorem 1.8

(Strong duality) If either (1.5) or (1.6) has an optimal solution, then so does the other problem and their objective values are the same.

Definition 2.1

If a feasible solution x of (1.5) is a basic solution of Ax = b as well, it is said to be a *basic feasible solution* (BFS).

Let B be the basis of a BFS x and x_B the the sub-vector of basic variables (which we assume are ordered to the columns of B). So we have $x_B = B^{-1}b \ge 0$. Unlike a basic solution which is guaranteed by Gauss-Jordan elimination, BFS due to nonnegativity restriction requires a more elaborated algorithm.

We now see the basic feasible solutions are exactly the vertices of the polyhedron.

Theorem 2.2

Of a standard LP, its BFSs and vertices are the same thing.

イロン 不同 とくほう イヨン

Proof: Let \bar{x} be a vertex. Since its face subsystem has rank is n, it includes, besides Ax = b (whose rank is assumed to be m), n - m nonnegativity restrictions which are, we may assume, the last n - m ones. Then the corresponding n - m variables should be all 0. And $B = [A_{\cdot 1}, \ldots, A_{\cdot m}]$ is a basis of the column space. Since $\bar{x}_B \equiv (\bar{x}_1, \ldots, \bar{x}_m)^T = B^{-1}b$, \bar{x} is basic. Since \bar{x} is feasible. it is a BFS.

Conversely, suppose \bar{x} is a BFS. We can reorder, if necessary, the columns of its basis and add n - m nonnegative restrictions from nonbasic variables to get the subsystem of active inequalities of \bar{x} as in the figure. Its rank is clearly n and hence \bar{x} is a vertex. \Box

イロン 不同 とくほう イヨン

Consider the following "pipe" network on which the total throughput of 1 flows from node 1 to node 4.

Let x_{ij} be the flow on arc (i, j). Then x is a feasible solution of the following standard LP. If we remove the last row which is redundant, the equality system has full-row rank, n - 1.

= 1 x_{12} $+x_{13}$ = 0 $-x_{12}$ $+x_{23}$ $+x_{23}$ = 0 $-x_{13}$ $-x_{23}$ $+x_{34}$ $+x_{35}$ (2.1) $-x_{54} = 1$ $-x_{24}$ $-x_{34}$ $-x_{35} + x_{54} = 0$ $x_{ij} \geq 0, \quad \forall i, j$

The figure indicates two feasible network flows. The left one is not a BFS (why?) whereas the right one is a BFS of (2.1).

$$A = \begin{bmatrix} x_{12} & x_{13} & x_{23} & x_{24} & x_{34} & x_{35} & x_{54} \\ +\mathbf{1} & +\mathbf{1} & 0 & 0 & \mathbf{0} & \mathbf{0} \\ -\mathbf{1} & \mathbf{0} & +\mathbf{1} & +\mathbf{1} & \mathbf{0} & \mathbf{0} & 0 \\ \mathbf{0} & -\mathbf{1} & -\mathbf{1} & \mathbf{0} & +\mathbf{1} & +\mathbf{1} & 0 \\ \mathbf{0} & \mathbf{0} & 0 & -\mathbf{1} & -\mathbf{1} & \mathbf{0} & -\mathbf{1} \\ \hline \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & -\mathbf{1} & +\mathbf{1} \end{bmatrix}$$

(2.2)

Its basis consists of A_{12} , A_{13} , A_{34} , A_{35} .

イロト イポト イヨト イヨト

Recall that the optimal solutions constitutes a face F, the intersection of the polyhedron and the supporting hyperplane determined by the objective coefficient vector. Since a standard system has rank n, F should contain a vertex.

Theorem 3.1

An optimal solution of a standard LP is attained at a vertex.

The simplex method searches an optimal BFS by moving from a vertex to an adjacent vertex of a smaller objective value.

Definition 3.2

We call two BFSs are *adjacent* if they are adjacent as basic solutions, namely if the bases of the BFSs have exactly m - 1 columns in common.

≡ nar

Definition 3.3

It two vertices are on the same one-dimensional face, they are said to be *geometrically adjacent* (이웃 하다).

A one-dimensional face is called an *edge*. Thus two vertices are adjacent iff they are the endpoints of an edge.

- 4 同 2 4 日 2 4 日 2

Theorem 3.4

Two BFSs are adjacent if and only if geometrically adjacent.

Proof: (\Rightarrow) Suppose two BFSs, u and v, have the bases B and B' resp. with exactly m-1 columns in common. Then they have exactly n-m-1 common nonbasic variables which, along with Ax = b, is a face subsystem of a face containing both u and v. Since the rank is n-1, the face has a dimension at most 1. Since it contains two distinct points u and v, it is one-dimensional. Therefore u and v are geometrically adjacent. (\Leftarrow) Let x° and $x^{\circ\circ}$ be the two end points of an edge. Since the maximum face subsystem of the edge $[x^{\circ}, x^{\circ \circ}]$ has the rank n-1, it includes n - m - 1 nonnegativity restrictions $x_{i_1} \ge 0, x_{i_2} \ge 0, \ldots$ $x_{i_{n-m-1}} \ge 0$ which increase the rank of Ax = b by n-1.

Edge
$$[x^{\circ}, x^{\circ \circ}] = \{x \in P : Ax = b, x_{i_1} = \dots = x_{i_{n-m-1}} = 0\}.$$
 (3.3)

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Proof(*cont'd*): The line from x° to $x^{\circ\circ}$ satisfies the subsystem of (3.3). Hence there should a blocking inequality $x_r \ge 0$ not from (3.3) which is satisfied by equality by $x^{\circ\circ}$ and increases the rank of subsystem into n.

$$\{x^{\circ\circ}\} = \{x : Ax = b, x_r = 0, x_{i_1} = \dots = x_{i_{n-m-1}} = 0\}.$$
 (3.4)

Therefore, the columns of A corresponding to the remaining variables constitutes a basis of the BFS $x^{\circ\circ}$. (See Figure 2.2.)

Similarly, there is s such that $\{x^{\circ}\} = \{x : Ax = b, x_s = 0, x_{i_1} = \cdots = x_{i_{n-m-1}} = 0\}$. We have $r \neq s$. (Why?) Thus x° and $x^{\circ\circ}$ have exactly m-1 columns in common in their bases and thus algebraically adjacent. \Box

From the proof, x° and $x^{\circ\circ}$ have the basic variable sets $\{1, \ldots, n\} \setminus \{s, i_1, \ldots, i_{n-m-1}\}$ and $\{1, \ldots, n\} \setminus \{r, i_1, \ldots, i_{n-m-1}\}$, respectively. If we drop x_r and enter x_s into the basic variables of x° , we get the adjacent BFS $x^{\circ\circ}$.

◆□ > ◆□ > ◆臣 > ◆臣 > □ = ○ ○ ○ ○

Exercise 3.5

Consider the following standard linear system and the basic feasible solution x^1 : $[4, 1, 0, 0, 0]^T$.

(1) Find the basis of x¹. Compute the adjacent BFS x² obtained by entering x₃ and dropping x₂ from the basis.
(2) Are x¹ and x² BFSs? Why?
(3) Are x¹ and x² adjacent? If so, identify the edge.

Exercise 3.6

Consider the network flow example and the BFS.

イロト イポト イヨト イヨト

We can observe a similar geometrical adjacency of general polyhedron.

Exercise 3.7

x_1		$-x_3$	≤ 1
		x_3	≤ 4
x_1	$+x_{2}$	$+x_{3}$	≥ 6
x_1			≥ 0
	x_2		≥ 0
		x_3	≥ 0

(1) Check $x^{\circ} = (1, 5, 0)^T$ is a vertex of the polyhedron. Relax the last inequality of the maximum face subsystem of x° to get the face subsystem of an edge.

(2) Using the edge from (1), find an adjacent vertex x^1 to $(1, 5, 0)^T$. (3) For the objective function $3x_1 + 2x_2 - x_3$, is $x^1 - x^\circ$ an improving direction? Why? Let \bar{x} be a basic solution with basis $B = [A_{.1} \cdots A_{.m}]$. Suppose \hat{x} is an adjacent basic solution obtained by entering x_s and dropping x_r . Recall, from page 64, Chapter 1, any point on the line segment $[\bar{x}, \hat{x}]$ is

$$\bar{x}(\delta) := \bar{x} + \delta \begin{bmatrix} -B^{-1}A_{\cdot s} \\ 0 \\ \vdots \\ s \, \mathfrak{M} \to 1 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} B^{-1}b \\ 0 \\ \vdots \\ 0 \\ \vdots \\ 0 \end{bmatrix} + \delta \begin{bmatrix} -B^{-1}A_{\cdot s} \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \quad (4.5)$$

for $0 \le \delta \le \Delta$, where $\Delta = (B^{-1}b)_r/(B^{-1}A_{\cdot s})_r$. Also we have $\hat{x} = \bar{x}(\Delta)$.