457.646 Topics in Structural Reliability **Lognormal Distribution**

1. Lognormal distribution

- Closely related to the normal distribution (______ function of a normal r.v.)
- Defined for _____ values only.

(a) PDF: $X \sim LN(\lambda, \zeta)$

$$f_{X}(x) = \frac{1}{\sqrt{2\pi\zeta x}} \exp\left[-\frac{1}{2}\left(\frac{\ln x - \lambda}{\zeta}\right)^{2}\right], \quad 0 < x < \infty$$

(b) CDF:

$$F_{x}(x) = \int_{-\infty}^{x} f_{x}(x) dx, \quad 0 < x < \infty$$

 \rightarrow no closed-form expression available, but can be computed by use of the table of <u>the</u> standard normal CDF $\Phi(\cdot)$ (as shown below)

(c) Parameters: λ , ζ

- $λ: mean of _____, i.e. λ = λ_X = E[ln X]$ σ: standard deviation of _____, i.e. ζ² = ζ²_X = σ²_{ln X}

(d) Shape of the PDF plots (see the plot above and below)

(e) Relationship between normal and lognormal distribution:

"The logarithm of a ______ random variable is a ______ random variable."

$$X \sim LN(\lambda, \zeta) \Longrightarrow \ln X \sim N(\lambda, \zeta)$$

(f) "The exponential function of a ______ random variable is a ______ random variable."

(g) Can obtain the CDF of lognormal $X \sim LN(\lambda, \zeta)$ from the CDF of standard normal:

$$F_X(a) = P(X \le a)$$

= $P(\ln X \le \ln a)$ Since $\ln X \sim N(\lambda, \zeta)$,
= $\Phi\left(\frac{\ln a - \lambda}{\zeta}\right)$

(h) $(\lambda, \zeta) \rightarrow (\mu, \delta)$: Find the mean and c.o.v. from the distribution parameters

$$\mu = \mathbf{E}[X] = \exp(\lambda + 0.5\zeta^2)$$
$$\delta = \sigma/\mu = \sqrt{\exp(\zeta^2) - 1} \quad (\cong \zeta \text{ for } \zeta << 1)$$

(i) $(\mu, \delta) \rightarrow (\lambda, \zeta)$: Find the distribution parameters from the mean and c.o.v.

$$\zeta = \sqrt{\ln(1 + \delta^2)} \quad (\cong \delta \text{ for } \delta << 1)$$
$$\lambda = \ln\mu - 0.5\ln(1 + \delta^2)$$

(j) $(x_{0.5}) \leftrightarrow (\lambda)$: Relationship between the median and λ

$$\lambda = \ln x_{0.5}, \ x_{0.5} = e^{\lambda}$$

(k) $(\mu, \delta) \rightarrow (x_{0.5})$: Find the median from the mean and c.o.v.

$$x_{0.5} = \frac{\mu}{\sqrt{1+\delta^2}}$$

Note: $x_{0.5} < \mu$ for the lognormal distribution.

Example 1: The drainage demand during a storm (in mgd: million gallons/day) is assumed to follow the <u>lognormal</u> distribution with the same mean and standard deviation as Example 2 of the previous lecture (mean 1.2, standard deviation 0.4). The maximum drain capacity is 1.5 mgd.

(a) Distribution parameters, i.e. λ and ζ ?

(b) Probability of the flooding?

(c) Probability that the drainage demand during a storm will be between 1.0 and 1.6 mgd?

(d) The 90-percentile drainage demand?

Example 2: Consider a bridge whose uncertain capacity against "complete damage" limit-state caused by earthquake events is defined in terms of peak ground acceleration (PGA; unit: g) that the bridge can sustain. Suppose the median of the capacity is 1.03g and the coefficient of variation is 0.50. It is assumed that the capacity follows a lognormal distribution.

(a) Distribution parameters of the lognormal distribution, i.e. λ and ζ ?

(b) The mean and standard deviation of the uncertain capacity, i.e. μ and $\sigma?$

(c) Suppose the peak ground acceleration from an earthquake event is 0.5g. What is the probability that the structure will exceed "complete damage" limit state?