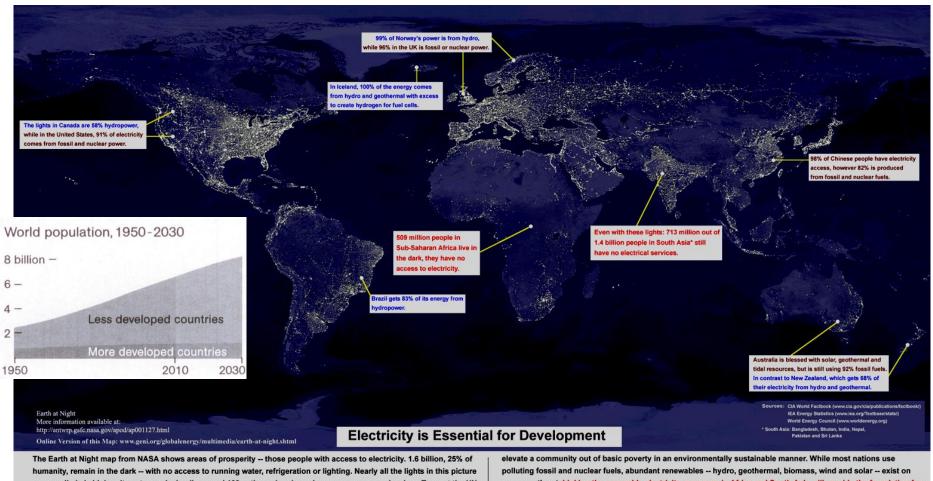
Week 6, October 10

Introduction to Appropriate Technology (AT)

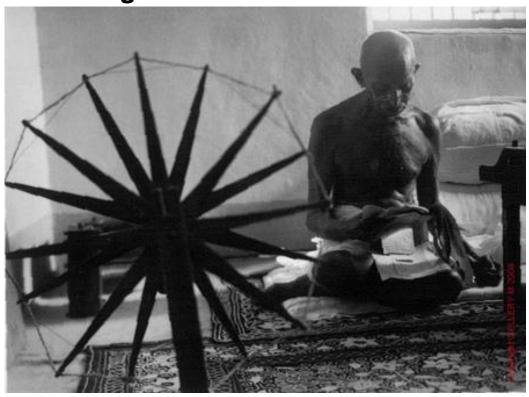
Fall 2017


Professor Sung-Hoon Ahn

Department of Mechanical and Aerospace Engineering Seoul National University

Contents

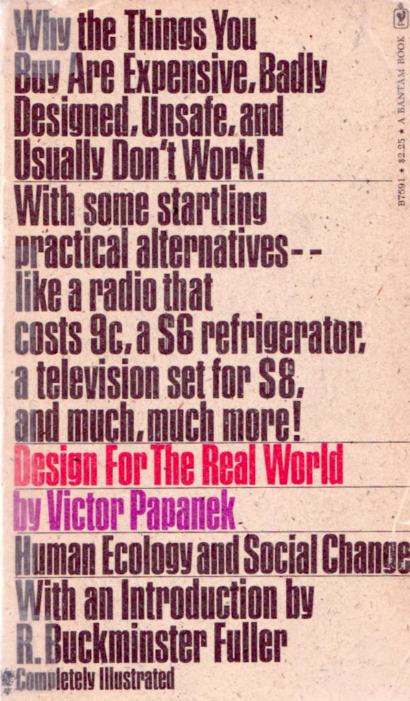
- Introduction to AT
 - Background, definition and history of AT
- Global importance and role of AT
- Examples of AT

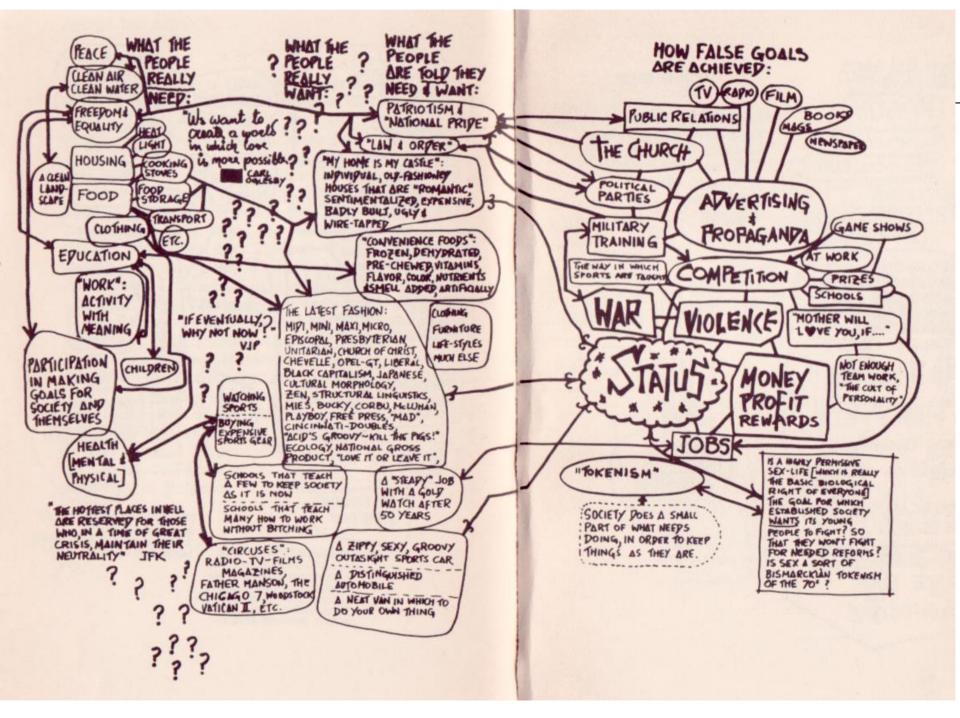

Urgent issues of the world

are supplied via high-voltage transmission lines, and 100 nations already exchange power across borders. To meet the UN Millennium Development Goals, a combination of grid-connected and stand-alone renewable electricity development will

every continent. Linking the renewable electricity resources in Africa and South Asia will provide the foundation for ending hunger and poverty.

- Mahatma Gandhi (Mohandas Karamchand Gandhi, India, 1869~1948)
- Gandhi advocated for small, local and predominantly village-based technology to help India's villages become self reliant
- Spread handlooms to Indian villages

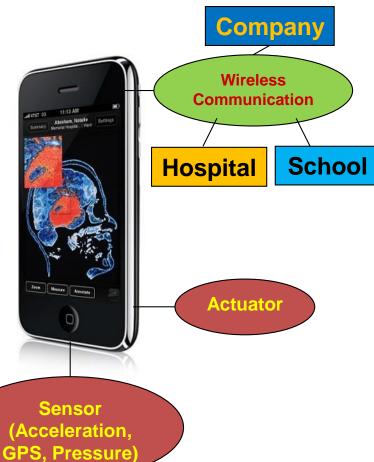

- E. F. Schumacher, (August 16, 1911 September 4, 1977, Bonn, German)
 - Ideological movement (and its manifestations) originally articulated as "intermediate technology" → developed to Appropriate Technology
 - Discussed in relationship to economic development and as an alternative to transfers of capital-intensive technology from industrialized nations to developing countries
- Small is Beautiful, First published in 1973
 - One of the fundamental books on ecological economics.
 - In Small is Beautiful, Schumacher also proposed "Buddhist Economics," which "tries to maximize human satisfactions by the optimal pattern of consumption," as opposed to mainstream Western economics, which "tries to maximize consumption".
 - The book is divided into four parts
 - PART I THE MODERN WORLD
 - PART II RESOURCES
 - PART III THE THIRD WORLD
 - PART IV ORGANISATION AND OWNERSHIP

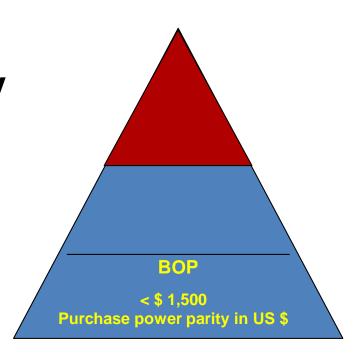


- Victor Papanek (Autria, 1927~1998)
 - Design for Human Scale- Papanek
 writes: "Much recent design has satisfied
 only evanescent wants and desires,
 while the genuine needs of man have
 often been neglected by the designer."
 - 9 cent radio (1966)
 - For Indonesian people to prevent hazard from volcanos
 - Thermoelectric power –
 knowledge on engineering!
 - No profit for any stake holders

Paul Polak (Czech Republic / USA)

- He provocatively argues that the "appropriate technology" movement has died - by which he means that its flowering in decades past had no major impact on the poor, and many organizations devoted to appropriate technology have closed or scaled down.
- Founder of IDE, D-Rev and Windhorse International


 He treats poor people as customers and emphasizes profit by business


Technology for TOP

Appropriate Technology – broader view

- AT
- Quality of Life Technology
- Social Technology
- Welfare Technology
- Technology for BOP
- Universal Design

What is appropriate?

- Wage
- Technology
- Customer's needs
- Local resource

→ Global collaboration maximizing mutual benefits

AT++

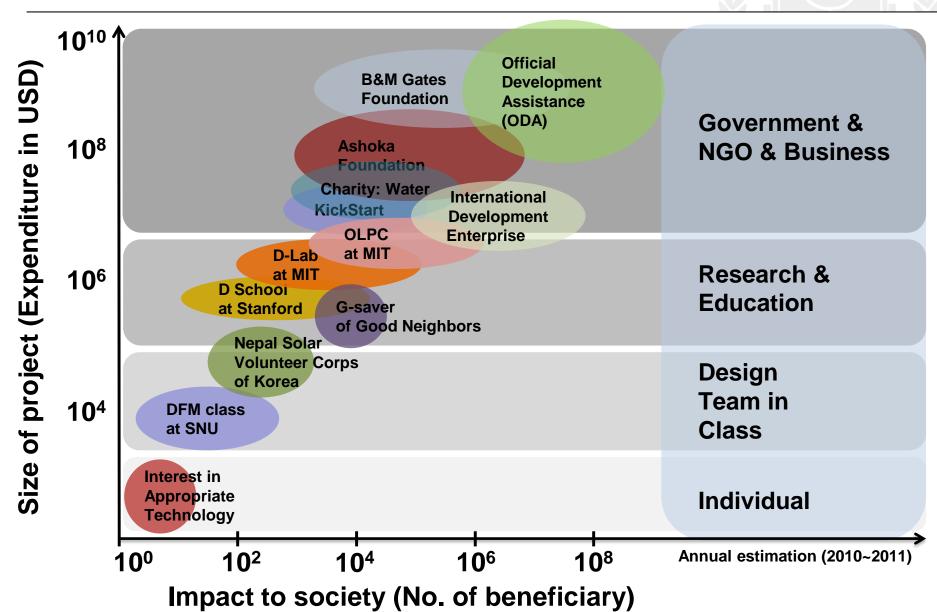
Issue to consider – extreme affordability

10*30 << 300 ??

Beyond technology

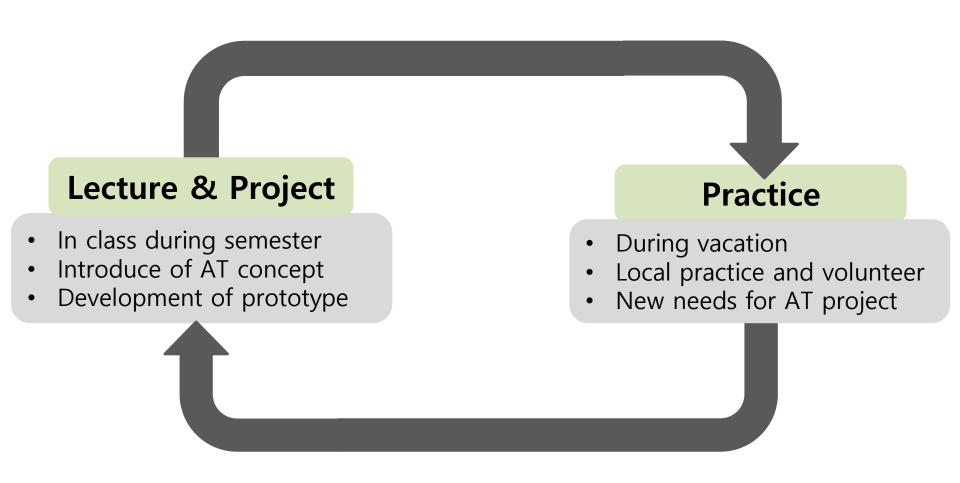
- SELCO (Harish Hande)
 - -Solar plant + Micro finance → 500,000 units
- D.light Design (Sam Goldman)
 - -Peace Corps, champion of GSVC → 2 million people
- Dambisa Moyo "Dead Aid"

Harish Hande



Sam Goldman

-Micro finance - Muhammad Yunus, 2006 Nobel Peace Prize, Grameen Bank



Impact of AT projects

Development & application model

Simple 2 step model of DFM class at SNU

Public contribution

Benefit many people in developing countries

Environmentally friendly

Decrease emission of pollutants and minimize the consumption of energy resources

Agenda of G20

Poverty reduction and economic development of developing countries

Mitigation of the development gap between countries

Appropriate technology

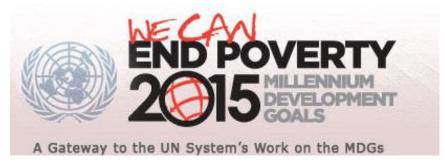
High technology

Available in high technology combined with appropriate technology

Social enterprise

Founding of social enterprise and improve the ability of the poor economy

Millennium development goal (MDG) by UN


Important in achieving the Millennium Development Goals UN

Millennium Development Goals(MDG) of UN

September 8th, 2000.
 All 193 United Nations member states and at least 23 international organizations have agreed to achieve by the year 2015.

Agenda

- Eradicating extreme poverty
- Reducing child mortality rates
- Fighting disease epidemics such as AIDS
- Developing a global partnership for development

Millennium Development Goals

- MDG 1: Eradicate extreme poverty and hunger
- MDG 2: Achieve universal primary education
- MDG 3: Promote gender equality and empower woman
- **MDG 4: Reduce child mortality**
- MDG 5: Improve maternal health
- MDG 6: Combat HIV/AIDS, malaria and other diseases
- MDG 7: Ensure environmental sustainability
- MDG 8: Develop a global partnership for development

MDG agenda can be effectively implemented via the "appropriate technology"

Sustainable Development Goals (SDGs)

Major differences between MDG and SDG

Difference #1: Zero Goals

Difference #2: Universal Goals

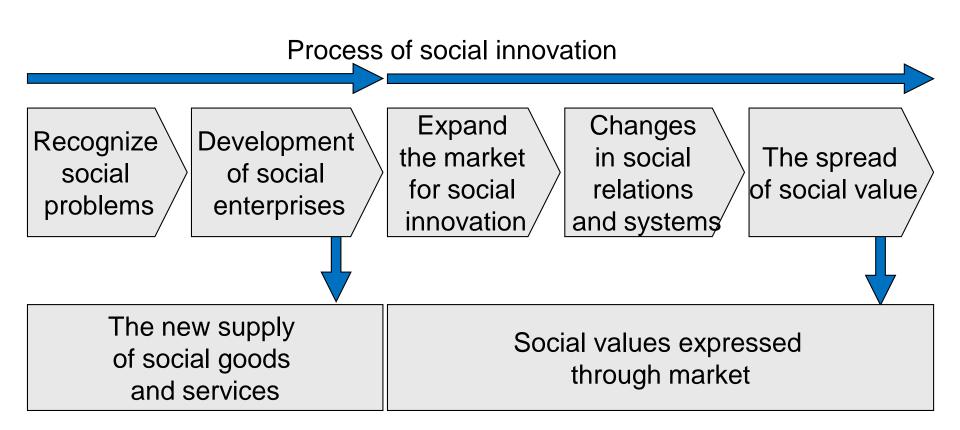
Difference #3: More Comprehensive Goals

Difference #4: Addressing THP Pillars

Difference #5: Inclusive Goals Setting

Difference #6:Distinguishing Hunger and Poverty

Difference #7:Funding


Difference #8: Peace Building

Difference #9: Data Revolution

Difference #10: Quality Education

Social enterprise

 Social enterprise: Organization that applies business strategies to achieving philanthropic goals

Social enterprise

Types of social enterprise

- Advantages of social enterprise
 - Ability to raise capital at below market rates due to the ethical investment industry
 - Easier access to publicity
 - Labor costs below average

For-profit

- Profits that are not re-invested in the organization are distributed to the owners of the corporation as cash
- Ex) **John Lewis**: Share of annual profits with owner and employees

Non-profit

- Uses surplus revenues to achieve its goals rather than to distribute them as profit or dividends
- Ex) **The Big Issue**: Street newspaper published in eight countries offer homeless people the opportunity to earn a legitimate income

Global AT research institutions

Outside research institutions

- NGO, company, and institution
 - Vestergaard Frandsen
 - International development enterprise (IDE)
 - Solar cooker international
 - Kickstart international

University

- Massachusetts institute of tech.(MIT)
- Stanford University
- Colorado State University
- John Brown University
- Barefoot College

Government

- U.S. Agency for international development
- U.S. Department of agriculture
- U.S. Department of energy

Development & application

Kickstart

5 Step Process

IDENTIFY OPPORTUNITIES What business will be profitable for these people, in this place?

DESIGN PRODUCTS What new tools will make this possible?

> **ESTABLISH A SUPPLY CHAIN** How can we produce these?

How do we convince someone with little money to make a big investment?

DEVELOP THE MARKET

MEASURE AND MOVE ALONG Is this going as we planned?

Ref) Kick Start: http://www.kickstart.org/

4

5

Development & application

Products

All KickStart products are designed with one purpose in mind:
 to help a person make enough money to lift their family out of poverty.

Products In Development

At KickStart, our Technology Development department in Nairobi is constantly at work improving our current products and developing new moneymaking technology for people in the developing world.

Super MoneyMaker

The Super MoneyMaker Pump is KickStart's best-selling pump with over 150,375 sold to date.

MoneyMaker Hip Pump

The MoneyMaker Hip Pump is KickStart's newest, lightest, and most affordable pump. Already over 29,375 in use.

Ref) Kick Start: http://www.kickstart.org/

Education and promotion

- ABOUT DESIGN OTHER 90: NETWORK
 - The Design Other 90 Network is an open-network database

- Share vital design resources for developing and emerging economies.
- Connect with stakeholders in the fields of design, architecture, sustainability, humanitarian aid, and more.
- Engage a broad international audience in developing solutions for those living in poverty.

Education and promotion

ABOUT DESIGN WITH THE OTHER 90%: CITIES

 To formulate innovative approaches to urban planning, affordable housing, entrepreneurship, nonformal education, public health, and

more.

EXCHANGE

View solutions that promote the exchange of design knowledge between informal settlements and formal cities.

REVEAL

View solutions that increase awareness of conditions in informal settlements, which often do not show up on official maps or in census rolls.

ADAPT

View solutions that help residents of informal settlements respond to challenges facing their communities.

INCLUDE

View solutions that seek to include those who have been marginalized by the established city, especially the poor, women, and youth.

PROSPER

View solutions that help create work opportunities in informal communities.

ACCESS

View solutions that improve access to water, sanitation, food security, electricity, health, transportation, and education

Education, promotion

- DESIGN FOR THE OTHER 90%
 - The exhibition features five main areas of interest:
 - Water, Health, Energy, Education and Shelter

SHELTER

WATER

ENERGY

HEALTH

EDUCATION

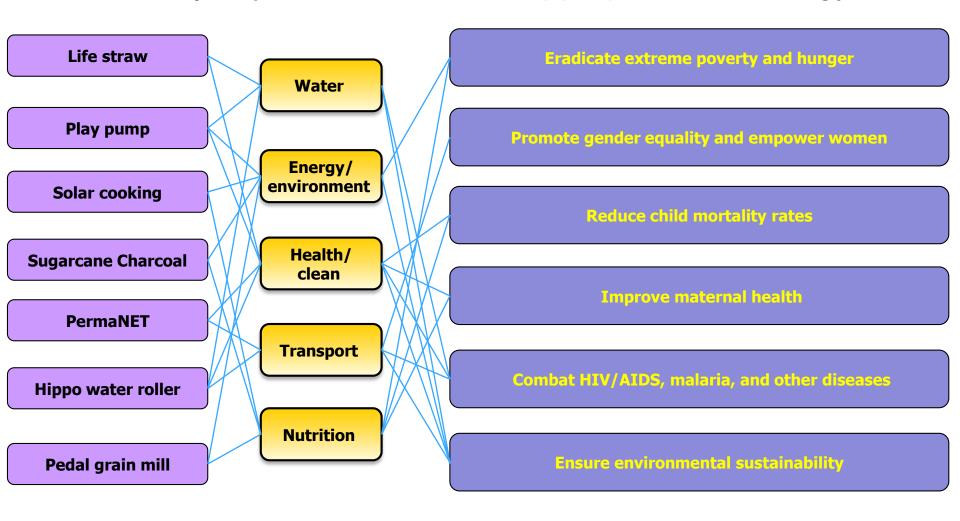
TRANSPORT

- A revolution in design
 - "The majority of the world's designers focus all their efforts on developing products and services exclusively for the richest 10% of the world's customers. Nothing less than a revolution in design is needed to reach the other 90%."
 - —Dr. Paul Polak, International Development Enterprises

Financial support

Kopernik

- Kopernik website showcases the latest technologies
- Local groups (NGOs) choose what is most needed in their area and apply online for funding.
- After vetting, we post the project on our website so that you can choose what you want to fund.
- The technology is shipped directly to the local NGO, avoiding middlemen, so more of your money (in the form of technology) reaches the end user.
- You get feedback about how your donation has helped people's lives.


Ref) Kopernik: www.thekopernik.org

Examples of AT

- Water
- Energy
- Environment
- Cleanliness
- Residence
- Transport
- Nutrition
- Health
- Education

Problems and solutions

Effectively implemented via the "appropriate technology"

Drinking Water Crisis

884 million

deprived of improved sources of drinking water

4 billion

annual cases of diarrheal illness

1.8 million

lives lost each year due to diarrheal disease

443 million

school days lost each year from water-related illness

117 million

disability adjusted life years (DALYs) lost annually due to diarrhea and intestinal worm infections

Lifestraw

- Portable Water Filter
 - Offers easy access to clean and safe drinking water away from home
 - Filters at least 1000L of contaminated water
 - Removes minimum 99.9999% of waterborne bacteria (>LOG 6 reduction)
 - Removes minimum 99.9% of waterborne protozoan parasites (>LOG 3 reduction)
 - Reduces turbidity by filtering particles of approximately 0.2 microns
 - Contains no chemicals
 - Has a high flow rate
 - Requires no electrical power, batteries or replacement parts

Ref) www.lifestraw.com

Lifestraw family

1. Feed water bucket with pre-filter

2L capacity container for filling with unpurified water

2. Pre-filter

The 80 micron pre-filter removes coarser turbidity and easy to clean

3. Halogen chamber

Releases low-level chlorine to prevent membrane fouling

4. Plastic hose(one meter long)

Gravity creates sufficient pressure on the membrane cartridge in order to reach a high flow rate

5. Membrane cartridge

Ultra filtration takes place in the membrane cartridge – a pore size of 20 nanometer retains bacteria, viruses, parasites and fine dirt particles

6. Blue tap

Outlet for purified water

7. Cleaning bulb

Backwashing of the membranes is done by squeezing the bulb three times

8. Exit valve

Disposes the dirt and impurities

Ref) www.lifestraw.com

Physical Performance

Intervention	Water treatment capacity	Processing time /Flow rate	Factors affecting performance	Impact on water taste /appearance	Repeat intervention required
LifeStraw family	18,000 liters	Instant access Average 9 liters/hour	Safe storage if water not consumed directly	Neutral for taste; positive for appearance	No
LifeStraw	At least 1,000 liters	280mL/min at the beginning	Provides access to safe and clean drinking water away from home	Neutral for taste; positive for appearance	No
Boiling	Not applicable	20 minutes (includes heating water to 100 °C, 1min. Boiling, cooling)	Boiling temperature and safe storage	Neutral or negative for taste; neutral for appearance	Yes

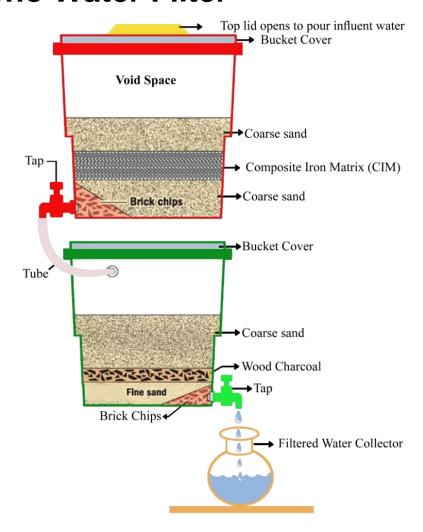
Ref) www.lifestraw.com

Examples of AT – Water, Cleanliness

Microbiological performance

Intervention	Bacteria	Virus	Protozoan Parasites	Meets Environmental Protection Agency protocol
LifeStraw family	Minimum 99.9999%	M inimum 99.99%	Minimum 99.9%	Yes
LifeStraw	Minimum 99.9999%	Minimum 99.99%	Minimum 99.9%	Yes
Boiling	99.9999%	99.99%	99.9%	Yes

Ref) www.lifestraw.com


Sono Water Filter

- Active material, a composite iron matrix (CIM) absorbant
- The low-cost, two-bucket system
 - A cost of US\$35
- SONO can remove arsenic, manganese (a neurotoxin), iron, and all transition metal ions
- Filters can last at least fourteen years at the present usage rate of one hundred liters per day
- SONO has made larger filters to clean a hundred liters an hour

Examples of AT – Water and sanitation

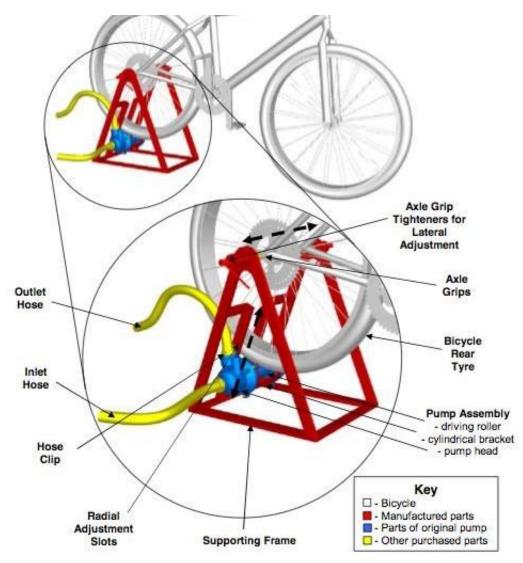
Sono Water Filter

Schematic diagram of SONO Filter

Examples of AT – Water and sanitation

Gongali Model: Nano Filter

Bone char filter(BCH)


Membrane purifier(MP)

Mobile bicycle powered water pump

- Bicycle-powered water pump for irrigation and water distribution in Guatemala
- Goal is to improve the daily lives of locals without finicky (and expensive) fossil fuel machines
- The machine can pump 40 liters of well water per minute
- Portable

BOGO Light

- Kerosene lamps are not only costly, they're also hazardous to the users' health (exposed to kerosene lantern fumes equivalent to ingesting two packs of cigarettes a day)
- Solar flashlight
- Solar-charged batteries run about six hours at full level
- The flashlight proves water-resistant
- Cost \$25
- Batteries "last 750/1000 nights!"
 and the LEDs "last 20 years

Nepal Solar Volunteer Corps

Before (August 14)

and After (August 15)

Sustainability of AT

Example of 'SNU Nepal Solar Volunteer Corps'

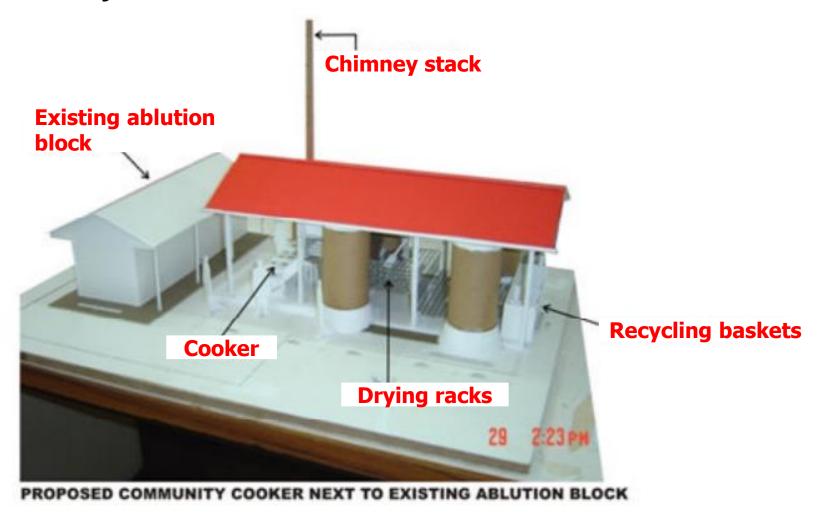
Key for sustainability

- Increase in income
- Sustainable business model
- Continuous support

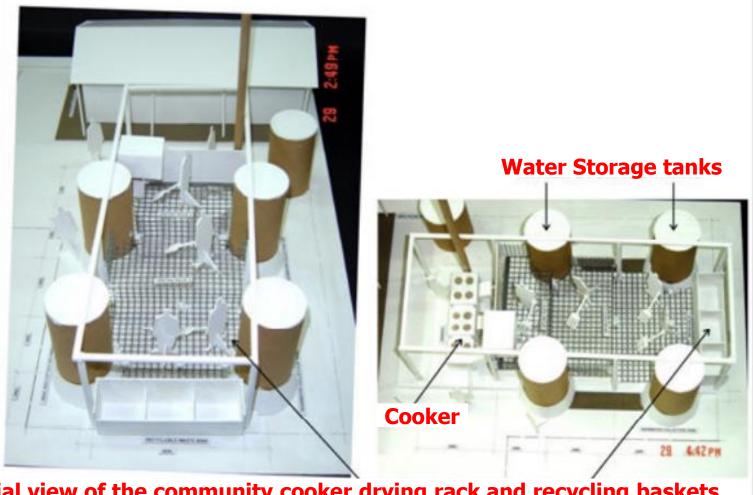
Before electricity	After electricity
Single bed (NRs. 300/night)	Single bed (NRs. 400/night)
Phone (Sometimes)	Phone (Regular)
Camera battery charge (not possible)	Camera battery charge (100/battery)

Examples of AT – Energy, Cleanliness

Community cooker


- Instead of using wood and charcoal Community Cooker, a communal oven that uses rubbish as fuel
- A water and oil combustion that can burn without releasing toxic fumes
- Creating an employment opportunity for local youth
- Improved ground water quality
- Improved health from
 - Reduced rubbish heaps
 - Washing in hot water
 - Drinking boiled water
 - Cooking food

Ref) http://communitycooker.org/


Examples of AT – Energy, Cleanliness

Community cooker

Examples of AT – Energy, Cleanliness

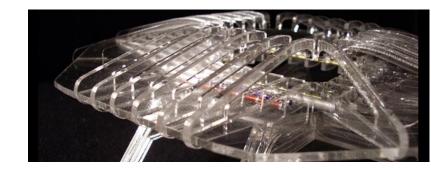
Community cooker

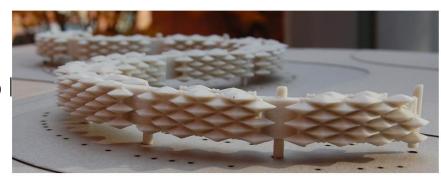
Aerial view of the community cooker drying rack and recycling baskets

Examples of AT – Residence

■ Concrete Canvas Shelters TM

- A 25sqm CCS can be deployed by 2 people in less than 1 hour and is ready to use in only 24 hours Rapid
- The compressive structure of CCS has been modelled to be covered with sand or earth (berming) to provide protection against small arms fire and shell fragments. Force protection
- CCS are far more durable than tenting with a design life of over 10 years. Durable


Ref) http://www.concretecanvas.co.uk/



Examples of AT – Residence

fabHAUS

- Individually fabricated housing unit
- Repetitive modules
- Sub-modules
- Separation of the structure into primary, secondary, and tertiary systems
- Enable the building components to fabricated using mass production, customization, and assemblage techniques

Ref) http://fabhaus.com/

Examples of AT – Residence, health

- PermaNet® 3.0
- Health care
 - An annual 300-500 million cases of malaria worldwide
 - At least one million people die from the disease
 - Young children account for most of these deaths
 - Malaria is a great drain on many national economies
 - 'growth penalty' of up to 1.3% per year in some countries
 - Leads to a vicious cycle of disease and poverty.

Examples of AT – Construction

Construct the house using 3D printer

Examples of AT – PermaNet® 3.0

Health care

- PermaNet® 3.0 technology enables sustained effectiveness of pyrethroids
- New generation long-lasting insecticidal net (LN)
- Rapid regeneration of insecticide even after multiple washes
- Unique wall construction leading to enhanced lifetime of the net

Item	Roof	Sides
Material	100% polyethylene	100% polyester
Yarn	100 deniers	75 deniers
Insecticide (deltamethrin)	4.0 g/kg	2.8 g/kg
Synergist (PBO)	25 g/kg	NA
Mesh	Minimum 156 holes/inch ²	
Available sizes	160x180x150 cm 190x180x150 cm	
Available shape	Rectangular	

Examples of AT – Water

Q Drum

Lack of access to water

- Practical and durable design of
- Enables more water to be transported more efficiently than traditional methods
 - Empowers women and children
 - Saves time and energy
 - Reduces suffering

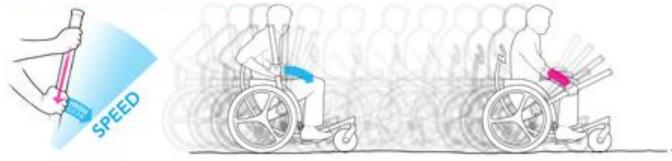
Specification

- Capacity of 90 liters / 24 gallons
- Weight of water (90kg / 200lbs)
- The effective weight on level ground is just 10kg (22 pounds)

Examples of AT – Transportation

Leveraged Freedom Chair

- Narrow doorways, steep hills, bumpy, muddy roads and long distances to destinations like school (often upwards of two to three miles in Tanzania)
- The ability to live with as little assistance as possible
 - + independence
- The ability to get to where they want to go, when they want to go
 - + Empowerment
- A tool that's at a price that they're able to afford
 - + Affordability


Examples of AT – Transportation

Leveraged Freedom Chair

How it works:

Grabbing low on the levers increases angular velocity

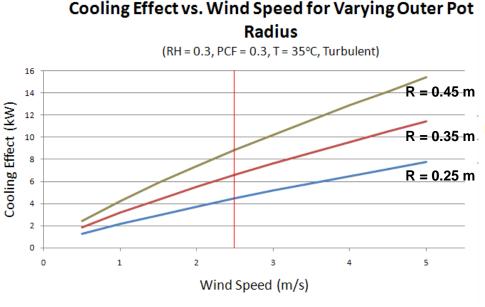
Examples of AT – Nutrition and Energy

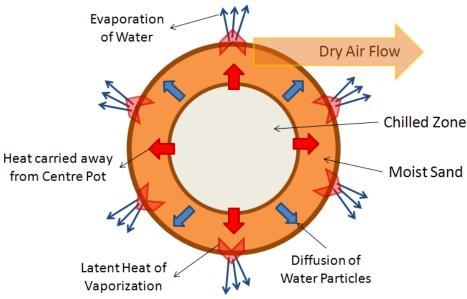
Pot refrigeration

- Maximizing economic and nutritional yield
- Increased profits from food sales
- Increased opportunities for women
- Rural employment opportunities
- Increased diet variety

Shelf of common produce with Zeer pot refrigerator

Food	Unrefrigerated shelf life	Shelf life with zeer
Carrots	4 days	20 days
Eggplant	1-2 days	21 days
Guava	2 days	20 days
Meat	<1 day	~14 days
Okra	4 days	17 days
Rocket	1 day	5 days
Tomatoes	2 days	20 days




Ref) http://www.appropedia.org/Zeer_pot_refrigeration_(design)

Examples of AT – Nutrition and Energy

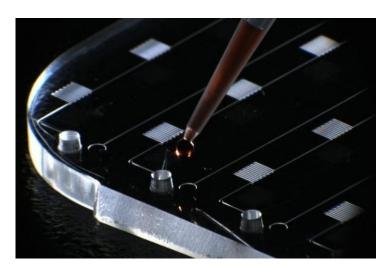
Zeer Refrigerator

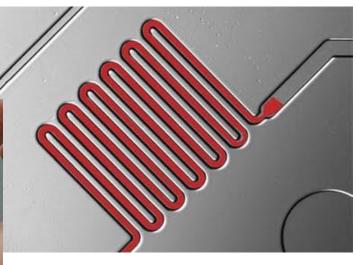
- Using latent heat of vaporization
- Zeer refrigerator, water evaporates out of the sand through the surface of the outer clay pot and from the whole top surface of the moist sand exposed to the solar radiation, removing energy from the system.

Conceptual Flow of Energy and Water in Zeer Refrigerator

Examples of AT – Food and Nutrition

Universal Nut Sheller


- Every year, in Africa alone, women spend about 4 billion hours shelling peanuts by hand
- Poorest families, peanuts are the only protein they can afford
- Simple hand-powered device
- 50 kg/hr (120 lbs/hr)
- The device requires less than \$50 in common materials to make, lasts 25 years



Examples of AT – Health

mChip

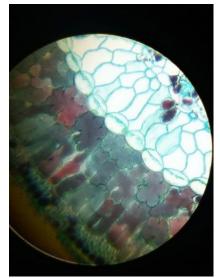
- Portable blood testing device
- Diagnosis and treatment of HIV and sexually transmitted infections
- mChip costs only \$1
- smart card sized
- works based on microfluids
- A single drop of blood is enough to detect HIV and gives reliable results in just 15 minutes.

Ref) http://www.mchip.net/

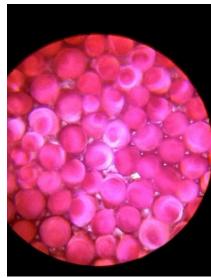
Examples of AT – Health

Self-adjustable Eyewear

- A tool for use with self-refraction
 - Two clear membranes filled with silicone fluid
- Self-adjustable eyewear only \$3
- A ready-made pair of spectacles that can be dispensed immediately after refraction (whether by self-refraction or conventional methods such as subjective refraction)
- Elimination of the delays and extra expense incurred when refractions and dispensing are conducted at separate locations


Ref) http://www.gv2020.org/about.htm

Examples of AT – Health


CellScope

- Portable, Low-Cost Imaging for Monitoring and Disease Diagnosis
- Microscopy to a mobile phone platform
- Fletcher Lab at the University of California, Berkeley,
- Magnification : 5x-60x

A pine needle under high magnification.

A flower petal viewed through the CellScope.

Examples of AT – Education

digital drum

- UNICEF Uganda representative
- Solar-powered computer kiosk
 - solar panel (3x55W)
- Built affordably with readily available materials
- weatherproof the keyboards and laptops with inner tubes and sealant

Examples of AT – Education

One Laptop Per Child (OLPC)

- Designed to be inexpensive
- Use little energy and brave extreme weather conditions
- Spec.
 - Marvell ARMADA PXA618 SOC processor, Avastar Wi-Fi SOC, standard or Pixel Qi sunlight-readable display, and supports Android and Linux operating systems.
- Cost \$172 (goal \$100)

Ref) http://one.laptop.org/

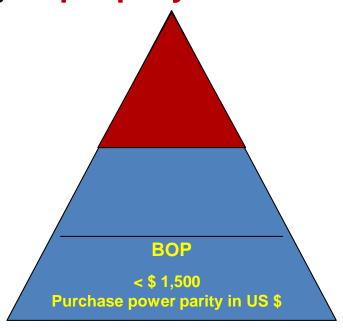
Examples of AT – Communication


Google: Project Loon

Sustainability of AT

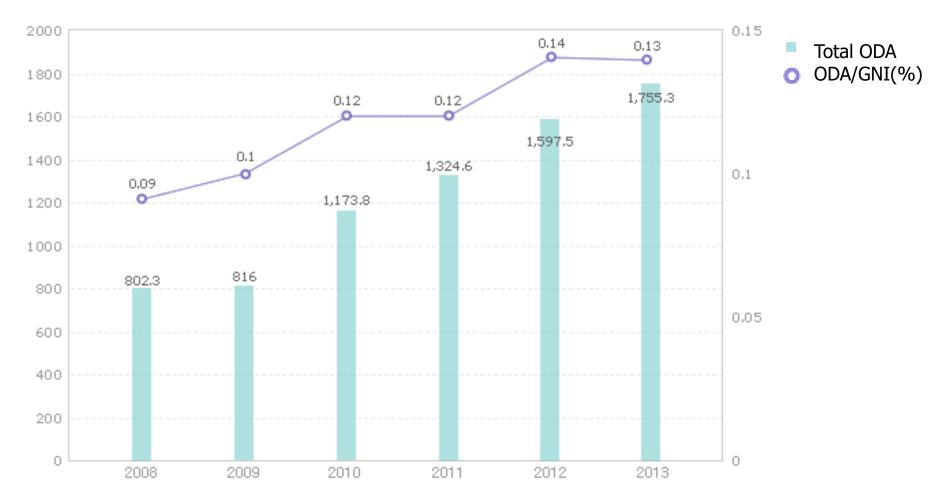
Failure example of PlayPump

- Trevor Field
- Spent 16.4 million USD
- Merry-go-round was not fun for children
- Failure of components



Vision of AT engineers

"There's plenty of room at the bottom"


Richard Feynman

There're plenty of people you can help at the bottom

ODA (Official Development Assistance)

■ `08 ~ `13 ODA/GNI (million UDS)

Ref) http://www.odakorea.go.kr/

Reference

Reference

- http://kis.stepi.re.kr (과학기술정책연구원)
- http://www.stiweb.org/ (나눔과기술)
- http://www.goodneighbors.kr/ (マ네이버스)
- Creating a World Wide Web of Appropriate Technology, @HUMAN.NET, Yonsei university
- http://www.who.int/topics/millennium_development_goals/en/
- http://www.kickstart.org/
- www.other90.cooperhewitt.org
- http://www.designother90.org/cities/home
- http://archive.cooperhewitt.org/other90/other90.cooperhewitt.org/
- www.thekopernik.org
- www.lifestraw.com
- http://www.designother90.org/cities/solutions/sono-water-filter
- http://www.mayapedal.org/
- http://www.healthywater.com/bogo.html
- http://communitycooker.org/
- http://www.concretecanvas.co.uk/
- http://fabhaus.com/
- http://vestergaard-frandsen.com/
- http://www.qdrum.co.za/
- http://mlab.mit.edu/lfc/Welcome.html
- http://www.instructables.com/id/Universal-Nut-Sheller/
- http://www.mchip.net/
- http://www.gv2020.org/about.html
- http://cellscope.berkeley.edu/index.html