M2794.006900 DESIGN FOR MANUFACTURING

Week 9, November 02

Manufacturing Processes 1. Subtractive Processes

Fall 2017

Professor Sung-Hoon Ahn

Department of Mechanical and Aerospace Engineering Seoul National University

Outline

- Multi-scale fabrication
 - Subtractive processes
 - Additive processes
- Mechanical machining
 - Introduction
 - DFM: Micro machining (drilling and milling)

- Laser machining
 - Introduction
 - DFM: Laser machining
- Focused ion beam (FIB) fabrication
 - Introduction
 - DFM: FIB
- Conclusions

Today's class

Scale	Example	Additive process	Subtractive process	
macro/meso (100 mm) 10 ⁻¹	•Mouse •CD-ROM	Deposition Rapid Prototyping	Precision machining	
micro (100 μm) 10 ⁻⁴	Human hair ~ 60-120 μm wide MicroElectroMechanical (MEMS) devices 10 -100 μm wide Red blood cells (~7-8 μm)	Cold spray	Laser machining	
nano (100 nm) 10 ⁻⁷	-Virus =Smoke -Protein	Nano particle deposition	Focused ion beam	

#1 Precision machining (정밀가공)

- Type : Subtractive
- Scale : 100 $\mu m \sim$ 100 mm
- Material : metal, polymer, etc
- Characteristic: High speed spindle, precision stage, micro-tool

High speed spindle (43,000 rpm)

Micro tool (Material: HSS & TiN coating)

Machining process of 3-axis micro-stage

Precision micro stage (1µm resolution)

Micro-wall

Micro-rotor

#2 Laser machining (레이저 가공)

- Type: Subtractive
- Scale : tens of μm ~ several mm
- Material : metal, polymer, ceramic
- · Characteristics : no tool-tip change

Schematics of laser machining system

Scan area & stage

Machining process

Light guide

Cell phone key pad

#3 Focused ion beam (FIB) (집속이온빔)

- Type: hybrid (Additive + Subtractive)
- Scale: 10 nm ~ 100 μm
- Metal: all solid
- · Characteristics : ultra precision, direct writing
- Cost : 200,000 won / hr.

Focused ion beam system

20 um

Micro/Nano Probe

Process envelope

Machining (기계가공)

- Machining is the broad term used to describe removal of material from a workpiece.
 - Cutting (절삭가공)
 - Abrasive processes (입자가공)
 - Advanced machining processes (특수기계가공)

High speed machining

FIGURE 11.1 Integrated product and process design allows this aerospace component to be completely machined from the solid as shown in the lower photograph (Courtesy of Dr. Donald Sandstrom, The Boeing Company)

High speed machining

Cutting processes

TABLE 8.7

General Characteristics	of Machinin	g Processes
-------------------------	-------------	-------------

Process	Characteristics	Commercial tolerances (±mm)		
Turning	Turning and facing operations are performed on all types of materials; requires skilled labor; low production rate,	Fine: 0.05–0.13 Rough: 0.13		
	but medium to high rates can be achieved with turret lathes and automatic machines, requiring less skilled labor.	Skiving: 0.025–0.05		
Boring	Internal surfaces or profiles, with characteristics similar to those produced by turning; stiffness of boring bar is important to avoid chatter.	0.025		
Drilling	Round holes of various sizes and depths; requires boring and reaming for improved accuracy; high production rate, labor skill required depends on hole location and accuracy specified.	0.075		
Milling	Variety of shapes involving contours, flat surfaces, and slots; wide variety of tooling; versatile; low to medium production rate: requires skilled labor.	0.13-0.25		
Planing	Flat surfaces and straight contour profiles on large surfaces; suitable for low-quantity production; labor skill required depends on part shape.	0.08-0.13		
Shaping	Flat surfaces and straight contour profiles on relatively small workpieces; suitable for low-quantity production; labor skill required depends on part shape.	0.05-0.13		
Broaching	External and internal flat surfaces, slots, and contours with good surface finish; costly tooling; high production rate; labor skill required depends on part shape.	0.025-0.15		
Sawing	Straight and contour cuts on flats or structural shapes; not suitable for hard materials unless the saw has carbide teeth or is coated with diamond; low production rate; requires only low labor skill.	0.8		

(http://youtube.com/watch?v=r_KUIx3aBhQ)

Turning (선삭)

Rate of removal = V f w

Where V:cutting speed (m/min) f:feed (mm/rev) w:depth of cut (mm)

Lathe-round shape

(a) Straight turning

(d) Turning and external grooving

(b) Taper turning

(e) Facing

(g) Cutting with a form tool

(j) Cutting off

(h) Boring and internal grooving

(k) Threading

FIGURE 8.40 Various cutting operations that can be performed on a lathe.

(c) Profiling

(f) Face grooving

(i) Drilling

Workpiece Workpiece

Lathe components (선반)

Drill

FIGURE 8.48 (a) Standard chisel-point drill, with various features indicated. (b) Crankshaft-point drill.

Milling

- Depth of Cut (DOC)
- Width of Cut (WOC)
- Slab milling (평밀링)
- Conventional Milling (up milling, 상향절삭)
 - Recommended, clean surface before machine
- Climb Milling (down milling, 하향절삭)
 - Efficient cut (larger chip)
 - Less chatter
 - Production work

Figure 11.32 Methods of feeding work on milling machine. *A*, Conventional or up milling. *B*, Climb or down milling.

Material removal by milling

- Cutting speed (m/min)
 - V = πDN

(D: diameter of cutter(m), N: rotational speed of the cutter(rpm))

- Material Removal Rate (MRR)
 - MRR = WOC * DOC * f
 - f = feed rate (mm/min) = n * N * t
 (n: number of tooth, t : feed per tooth, N : rotational speed of the cutter)

- Example
 - V = 50 m/min, t = 0.1 mm/tooth, number of tooth (n)= 2, D = 4 mm, DOC = 0.2, WOC = 3, Cutter RPM (N) = 50000/(πx4) = 3979
 - f = 2 *3979 * 0.1 = 796 mm/min, MRR = 3* 0.2 * 796 = 4776 mm³/min

Sources of Errors

- Vibration (chatter)
- **Tool deflection**
- Temperature change

- Run-out
- Form Errors
- Surface Roughness

a. ideal geometry

b. form error

Form Error

Ideal Geometry

Taylor's equation, $VT^n = C$

- V = cutting speed
- T = tool life
- n, C = Taylor constants (empirical)
- f = feed rate, d = depth of cut
- $VT^n = C$
- $logV = \frac{1}{n}logV + \frac{1}{n}logC$ • $T = \left(\frac{c}{v}\right)^{\frac{1}{n}}$ (f, d: constant)

Tool life-Feed rate (log scale)

The cost to produce each component in a batch is given by

$$C_{\text{PER PART}} = WT_L + WT_M + WT_R \left[\frac{T_M}{T}\right] + y \left[\frac{T_M}{T}\right]$$
(7.16)

In this equation, the symbols include

- W = the machine operator's wage plus the overhead cost of the machine.
- WT_L = "nonproductive" costs, which vary depending on loading and fixturing.
- WT_M = actual costs of cutting metal.
- WT_R = the tool replacement cost shared by all the components machined. This cost is divided among all the components because each one uses up T_M minutes of total tool life, T, and is allocated of $\frac{T_M}{T}$ of WT_R .
- Using the same logic, all components use their share $\frac{T_M}{T}$ of the tool cost, y.

More cost estimation

- Ostwald model
 - American Machinist Cost Estimator

- Demo
- Data for wage
 - <u>http://www.kosis.kr/ (</u>통계청)
 - <u>http://laborstat.molab.go.kr/</u> (노동부)

Material costs

Description	Quantity	1987–1988 Cost
Herefit Caroline Li	Weight	Cost: \$ per 100 lb
Structural shapes, carbon steel; $6 \times 4 \times \frac{1}{2}$ -in., angles, 350/400-in. long; ASTM specification A-7.	500 lb 2,000 lb	.31
FOB service center for less than base quantity; FOB mill for base quantity.	4,000 lb 6,000 lb Base quantity: 10,000 lb	.24 .23 .21
FOB: freight-on-board, warehouse	Weight	Cost: \$ per 100 lb
Structural steel shape, carbon steel, 8-in. wide flange, 24 lb per ft wide flange section \times 20 ft; ASTM specification A-36. FOB service center for less than base quantity: FOB mill for base	480 lb 2,000 lb Base quantity: 10,000 lb	.31 .30 .26
quantity.	Uthekness × 12-R length.	· I-in OD × .058-in vol FOD distantes:
Pipe, tube	Weight	Cost: \$ per 100 lb
Tubing, mechanical, carbon steel, electric weld; 1½-in. OD \times 14 ga, 1.256 lb per ft, random mill lengths. FOB service center for less than mill quantity; FOB mill for base quantity.	2,000 lb 6,000 lb Base quantity: 10,000 lb	1.04 .96 .92
NONFERROUS PRODUCTS	Weight	Cost: \$ per 1 lb
Bar, aluminum; 1×2 in. \times standard stock lengths of 12 ft; specification 6061-T6511. FOB destination.	28.2 lb 500 lb 2,000 lb Base quantity: 6,000 lb	3.07 1.71 1.38 1.30

Productive hour costs

мас	HINE, PROCESS, OR	BENCH		PORTLAND & WASHINGTON	ST. LOUIS &	SAN FRANCISCC & OAKLAND	TULSA	WORCESTER
3.10	Tube bending	et objecto	126451	11.58	12.03	12.13	10.46	11.84
3.11	Ironworker			11.58	12.03	12.13	10.46	11.84
4.1	Marking			9.04	10.17	11.79	9.70	10.70
4.2	Screen printing			11.74	10.17	12.45	10.75	10.91
4.3	Laser marking	02.4	-04.1a	9.04	10.17	11.79	9.70	10.70
4.4	Pad printing			11.74	10.17	12.45	10.75	10.91
5.1	Forging			12.76	13.89	15.80	12.75	13.53
5.2	Explosive forging			12.99	13.89	15.80	12.92	13.68
6.1	Engine lathe	44.54	89.11	12.99	13.89	15.80	13.41	13.65
6.2	Turret lathe			12.99	13.89	15.80	12.92	13.68
6.3	Vertical turret lathe			12.99	13.89	15.80	12.92	13.68
6.4	Numerical controlled	turning la	the	13.06	13.62	15.80	12.76	13.14
6.5	Numerical controlled	chucking	lathe	13.06	13.62	15.80	12.76	13.14
6.6	Single spindle automa machine	atic screw		12.76	13.89	15.80	12.75	13.53
6.7	Multispindle automa	tic screw n	nachine	12.76	13.89	15.80	12.75	13.53
7.1	Milling machine setu	р	d la	13.06	14.19	15.80	12.94	13.49
7.2	Knee and column mi	lling		13.06	14.19	15.80	12.94	13.49
7.3	Bed milling			12.11	13.08	13.95	11.09	10.78
7.4	Vertical-spindle ram-	type millin	ng	13.06	14.19	15.80	12.94	13.49

DFM: machining

Under cut

DFM: machining (2)

DFM: machining (3)

Including deburring cost

$$C_{deburring} = \frac{C_T}{N_P} + C_L(1+D_o)t_{deburring}$$

(Dornfeld et al. 2001)

where:

- C_T: Cost of deburring tool including equipment and tool replacement
- N_p: Number of parts deburred with the tool
- CL: Labor costs for deburring
- D₀: Overhead costs for deburring

t_{deburring}: Time for deburring the part

$$C_{burr-min} = C_{burr-min-tool} + C_{burr-min-machining}$$

$$C_{burr-removal} = minimum \{C_{deburring}, C_{burr-min}\}$$

$$C_{total} = C_{part} + C_{burr-removal}$$

Micro Machining System

Tip of 127µm endmill

- Positional resolution : 1 µm
- Tool diameter : 50 µm~1000 µm
- High speed : 200,000 RPM
- Tool material : HSS & TiN coating
- Work piece : Metal, Polymer, etc

Precision stage

DFM: micro milling

- 10 mm endmill
 - 10 µm stage error
 - 0.1% for slot cutting
- 100 µm endmill
 - 10µm stage error
 - 10% for slot cutting

- Cost structure of micro machining is different from that of macro machining.
 - Tool cost dominates

A tip is not exact edge in micro scale

Spindle run-out

- Run-out effect on the final geometry is critical in micro machining
- Total run-out = TIR (Total Indicator Reading) + Error Terms (vibration, thermal deformation, etc)

< Concept of run-out >

< Result of Total Indicator Reading (TIR) >

< Total Indicator Reading (TIR) Measurement >

Micro walls

Barrier ribs

Rib width: 60 μm Height: 500 μm Tool: φ200 μm

Spindle: 24,000rpm DOC: 25,^{µm} Feed rate: 100,^{µm}/s Time: 3hr 28min

Geometric error: ~ 5 µm (including error of microscope)

Micro machined mold

Micro drilling and milling

PCBs for semiconductor

PCBs for cell phone

Shape of Micro drill

Energy Consumption Model for Micro drilling

Measuring and decomposition of energy consumption of machine tool Consists of P_{BASIC} ($P_{PERIPHERAL}$), P_{STAGE} , $P_{SPINDLE}$, $P_{MACHINING}$

$$\begin{split} P_{TOTAL} &= P_{BASIC} + P_{SPINDLE} + P_{STAGE} + P_{MACHINING} \\ &= P_{BASIC} + (a_1 V^{b1} + c_1) + (a_2 f^{b2} + c_2) + (T \times f + M \times V) \end{split}$$

(H.S. Yoon, J.S. Moon, M.Q. Pham, G.B. Lee, and S.H. Ahn, paper accepted)

PCB drilling configurations

Energy Control Chart

Manufacturing Cost Model for Micro drilling

Considering tool wear

Consists of C_{TOOL}, C_{ENERGY}, C_{PERIPHERAL}

$$C_{TOTAL} = n/L \times (c^{1/\gamma} / (VD^{\alpha}f^{\beta})^{1/\gamma}) \times C_{TOOL} + t \times (P_{BASIC} + (a_1 V^{b1} + c_1) + (a_2 f^{b2} + c_2)) \times C_{ENERGY} + C_{PERIPHERAL}$$

(H.S. Yoon, J.S. Moon, M.Q. Pham, G.B. Lee, and S.H. Ahn, paper accepted)

Schematic of tool tip wear

Integrated energy consumption during 0~2,000 holes (Integral)
DFM: end mill wear estimation

- Milling condition
 - Cutting speed 60 m/min
 - Feed rate 0.003 m/min

- High speed spindle (HEN-40 ,Fisher, Swiss)
 - Max. 42,000 rpm, Run out $<2 \ \mu m$ (TIR)
- Precision micro-stage(404150XR , PAKER)
 - resolution 1 μm
- Programmable multi-axis Controller (PMAC2, Delta Tau Data Systems Inc.)

End mill wear

As the milling distance was increased, the wear at cutting blade was greater

REF) Park, J. B., Wie, K. H., Park, J. S., and Ahn, S. H.*, 2009, "Evaluation of machinability in the micro end milling of printed circuit boards," Proceedings of the Institution of Mechanical Engineers, Part B, Journal of Engineering Manufacture (England), Vol. 223, No. 11, pp. 1465-1474

Ultra-small Micro End Mill

 $\begin{array}{l} \mbox{Titanium alloy Ti-6Al-7Nb} \\ \mbox{D= 20 } \mbox{μm$} \\ \mbox{$v_{c}$= 3.14 m/min at 50000 rpm$} \\ \mbox{$f_{z}$= 0.1 } \mbox{$\mu$m/tooth$} \\ \mbox{a_{p}= 10 } \mbox{μm$} \end{array}$

 $\begin{array}{l} \text{PMMA} \\ \text{D= 10 } \mu\text{m} \\ \text{v}_{\text{C}}\text{= 1.57 m/min at 50000 rpm} \\ \text{f}_{\text{Z}}\text{= 0.2 } \mu\text{m/tooth} \qquad a_{\text{D}}\text{= 7 } \mu\text{m} \end{array}$

SEM pictures of slot milled structures

Micro milled undercut-dovetail structure in PMMA.

REF) Aurich, Jan. C.*, Reichenbach, Ingo G., Schuler, M. Guido, 2012, "Manufacture and application of ultra-small micro end mills," CIPR Annals – Manufacturing Technology, Vol. 61, pp. 83-86

Generation of Ion Beam Path: Description

Generation of ion beam path for the improvement of precision and accuracy: roundness, concentricity and precision of dimension

Raster w/o blanking

Serpentine

Offset

- - : Scan start
 - : Scan end

Illustration of ion beam paths: beam traces by different ion beam paths using FIB-CVD

Generation of Ion Beam Path: Experimental Results

Raster scan

Serpentine scan

Offset (in) scan

Offset (out) scan

Spiral (in) scan

Spiral (out) scan

Accuracies and precision of 2.5D circular pocket

Fabrication of 3D microstructure by FIB

- Characteristics of Continuous Slicing Method
 - Reduction of material redeposition by spiral scan
 - Angle dependent cutting enhancement

10

Dwell time

DFM: cutting force estimation

Backstitch tool path on micro-drilling

Fig. 6. Effect of the tool diameter on the hole positioning error. The hole interval was twice the tool diameter.

Fig. 9. Effect of the in-feed rate on the hole positioning error (tool diameter: 400μ m, spindle speed: 90,000 r/min).

Fig. 8. Effect of the hole interval on the hole positioning error (tool diameter: $400 \,\mu$ m, spindle speed: $90,000 \,r$ /min, in-feed rate: $40 \,m$ m/s).

Hole misalignment

Comparison of the backstitch tool path with a conventional tool path

Moon, J. S., Yoon, H. S., Lee, G. B., and Ahn, S. H., 2014, "Effect of Backstitch Tool Path on Micro-drilling for Printed Circuit Board," Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology

A Comparison of Energy Consumption in Bulk Forming, Subtractive, and Additive Processes

Yoon, H. S., Lee, J. Y., Kim, H. S., Kim, M. S., Kim, E. S., Shin, Y.J., Chu, W. S., and Ahn, S. H., 2014, "A Comparison of Energy Consumption in Bulk Forming, Subtractive, and Additiv Processes: Review and Case Study," International Journal of Precision Engineering and Manufacturing - Green Technology, IJPEM - GT

45

Applications of Subtractive Processes

46

DFM: Micro drilling for biomedical application

- Chronic Total Occlusion (CTO)
 - Complete obstructions or blockages of an artery
 - About 50% of severe CVD patients having CTO (*Christofferson et al., Am J Cardiol, 2005*)
 - Success rates of less than 70% for CTO treatment (Segev and Strauss, J Interven Cardiol, 2004)

■2008 Nucleus Medical Art, Inc.

Porous hydroxyapatite

Micro drilling test using a porus hydroxyapatite instead of CTO material

Blood Vessel Surgery Robot

DFM: force, torque, and wear

Burr 4

Burr 5

Tests for 6 different types of burrs

Burr 1

Burr 3

- Drilling speed : 120,000 ± 30,000 RPM
- Pressure : 3 kgf/cm²
- Flow rate : 15 Liter/min
- Feed : 2 mm/sec
- Max. depth : 3 mm
- Repeat number : 3 times
- Test condition : No water
- Test specimen : porous hydroxyapatite

Surface of the burrs after drilling test

SEM images of the Rotablator burr (left) and a burr with greater-like microblades (right) (Nakao et al. 2005)

FESEM images of the laser beam-engraved tool surface

REF) Kim, M. H., Kim, H. J., Kim, N. N., Yoon, H. S. and Ahn, S. H.*, 2011, "A rotational ablation tool for calcified atherosclerotic plaque removal," Biomedical Microdevice, Springer (Netherlands), Volume 13, No. 6, pp. 963-971

CNC Lathe

 CNC lathe can achieve multi-functional machining using attached milling turret, sub-spindle, etc.

Precision machining

GMC – Multi spindle Technology

Pulley

Precision machining

Pneumo Diamond Turning Machine

FANUC ROBOnano Ui

Ultraprecision machining

54

Diffractive grating machined radially on the diameter 12 mm disk, Ra < 1 nanometer

1μm V groove grating

Edge of line "No micro bur "

diameter 1 mm NOU mask

Cut by rotating diamond tool

- Resolution X,Y,Z: 1nm A,B,C: 1/100,000deg.
- Building Block Structure with Super Precision Units
- Column-less 5 axes machine with turning function

FANUC ROBOnano α-0*i*B

Ultraprecision machining

/arious machining options supporting all types of nano machining

Turning

Spherical lens mold

Material : NiP plate Size : Ø3 mm Figure accuracy : PV 52nm Surface roughness : Ra 1.3 nm

Main specifications

Stroke	X axis (horizontal linear)	280mm	40mm Y		
	Z axis (horizontal linear)	150mm	C		
	Y axis (vertical linear)	40mm	В		
	B axis (horizontal rotation)	360° (continuous rotation)	Z 150mm 280mm		
	C axis (vertical rotation)				
Bearing type	Hydrostatic air bearing	(all axes)	28011111		
Command resolution	X, Z, and Y axes	lnm			
	B and C axes	0.000001°			
Work-table area	B and C axes	Φ210mm			
Maximum feedrate	X and Z axes	500mm/min			
	Y axis	50mm/min			
	B axis	3600° /min			
	C axis	3600* /min			
		250min ⁻¹ (S axis mode)			
Straightness	X axis	0.2µm/280mm			
	Z axis	0.2µm/150mm			
	Y axis	0.2µm/40mm			
Run out	B and C axes	0.05µm			
Mass of the machine	Approx. 1700 kg				
Standard accessories	Supplying cutting fluid unit				
	Tool holder				
	Counter weight				
	Angle plate				
	Precision compressed air temperature control system				
	Speed display				

Milling air turbine spindle

Diameter of shank	φ6mm		
Maximum speed 50,000min ⁻¹			Milling tool
Dimensions/mass	ions/mass		
earing type Hydrostatic air bearing			
3un out 0.05μm (NRRO)			Workpiece
Speed display function provided		Workpiece	
•The balance can be corrected by t			

LASER machining

Light Amplification by Stimulated Emission of Radiation (LASER)

- Laser machining
 - Thermal process, removes mass by concentrating high energy
 - Small mass removal: cutting, drilling, welding . . .
 - No tool deflection from the contact \rightarrow high aspect ratio shape

Pulsed Laser

0.5Joule/cm2 @ 200fs

Mechanical machining vs. Laser machining

Light guide panel (LGP)

- Light guide panel is an element of the LCD back light unit
- Design of experiment using Taguchi method
 - Power, scanning speed, ratio of line gap, and number of line were investigated

The structure of TFT-LCD

Design of experiment

Orthogonal arrays and experimental results

(c) 30W, 50mm/s, 100:50, 90

(b) 30W, 40mm/s, 100:40, 85

(d) 40W, 30mm/s, 100:40, 90

(e) 40W, 40mm/s, 100:50, 80

(g) 50W, 30mm/s, 100:50, 85

(h) 50W, 40mm/s, 100:30, 90

Laser-machined Light Guide Panel

60

100 am

Laser therapy and surgery

Facial Pain

Elbow Pain

Laser therapy can release the pain and heal the body

Neck Pain

Knee Pain

reshaping the cornea during LASIK procedure

LASIK surgery for dry eye syndrome using laser

Cosmetic surgery: moles, warts, wrinkles, scars, hairs, tatoos, etc.

Focused ion beam (FIB) system

- Ion gun
 - Liquid metal ion source (LMIS)
- Ion optical column
 - Electrostatic lens
 - Scan coil
 - Stigmator
- Specimen chamber
- Vacuum system

Schematics of focused ion beam system

Utke et al. J. Vac. Sci. Technol. B 26 (4) 2008

Principle of FIB fabrication

- Elastic collision (nuclear collision)
 - Dislocation of surface atom by primary ion (PI)
 - Binary collision (collision cascade)
- Inelastic collision (electronic collision)
 - Secondary electron (SE) by PI
 - SE by inelastic collision
 - Backscattered electron (BSE) by SE
- Initiation of material removal
 - Excited surface atom (ESA) by nuclear collision
 - For Si substrate, the binding energy is 2.5 eV
 - When ion energy is exceed the substrate binding energy, the excited surface atom will be removed.

Utke et al. J. Vac. Sci. Technol. B 26 (4) 2008

FIB technology

- Merits
 - High throughput, low penetration depth
- Hybrid process
 - Material destruction & construction
- Various material
 - Destruction: all solid materials
 - Construction: C, W, Pt
- Various application
 - MEMS/NEMS, SPM tips
 - Micro/nanoscale medical devices
 - Photonic devices
 - Micro/nanoscale mould

Nano-fluidic emitter having 21 nm capillary slots

S. Arscott Nanotechnology 16 (2006) 2295

20µm

Two-tip micro-tool having triangular cutting facet

D P Adams Precision Engineering 25 (2001) 107

Considerations on DFM in FIB

Geometrical and efficiency issues related to DFM in FIB fabrication

REF) Kim, C. S., Ahn, S. H., Jang, D. Y., 2011, "Review: Developments in Micro/Nanoscale Fabrication by Focused ion beams," Vacuum, Elsevier (Netherlands), Volume. 86, No. 8, pp. 1014-1035.

DFM on FIB (1)

- Better surface roughness
- Better milling rate

Fabrication method

Repetition

Outer diameter

1

2 3

4 5

6 7 8

9

AFM cross-section view

66

DFM on FIB (2)

- To have vertical sidewalls
- To have bilateral-symmetry

Field of view

. .

Field of view

Raster scan routine

- Asymmetry

Spiral scan routine

- Symmetry

67

Nano-lathe (나노선반)

Conventional lathe in FIB system

Process outline of nano-lathe

Precision wheel stage attached to the FIB system

T Fijii J. Micromech. Microeng. 15 (2005) \$286

Scanning ion scope image showing the intermediate processing

Tool Path Generation

Concept of pocketing

70

Tool Path Generation (cont.)

- Rough Cutting
 - Remove bulk material
 - One type: the raw material has a shape close to the final shape
 - Second type: the raw material is provided in the form of block

Tool Path Generation (cont.)

- Gouging Problem
 - Choosing a tool whose radius is smaller than the minimum radius of curvature of the part surface
 - However, too small tool may result in inefficient machining

73

Overcut (cont.)

Area of Cutting

- Upward cutting vs. downward cutting
- Zero velocity zone may occur

Deflection of Tool

Undercut vs. overcut

5-axis Machining

Selection of tool size

Considering cost and time

Conclusion

- Material removal
 - Material removal rate (MRR) is important
- Under cut is usually not easy to fabricate
- Contact (mechanical machining) vs. non-contact (laser & FIB)
 - Direct tool shape transfer: the Gaussian beam shape for laser and FIB
 - Substrate properties dependency

Contact Information

- Precision machining
 - <u>http://nmrc.yonsei.ac.kr/</u> (EDM)
 - <u>http://www.sharp-eng.com/web/</u> (EDM & Machining)
- Laser machining
 - http://nmrc.yonsei.ac.kr/
 - http://www.laserpix.co.kr/
- Focused ion beam
 - http://nmrc.yonsei.ac.kr/
 - http://msp.or.kr
 - http://www.aac.re.kr/index.html