M2794.006900 DESIGN FOR MANUFACTURING

Week 11, November 14

Life Cycle Assessment (LCA)

Fall 2017

Professor Sung-Hoon Ahn

Department of Mechanical and Aerospace Engineering Seoul National University

Example of LCA - CAR

CV - conventional gasoline vehicle **BEV** - battery electric vehicle **HYBRID** - hybrid vehicle

[1] Deepak R. et al., Lifecycle Analysis Comparison of a Battery Electric Vehicle and a Conventional Gasoline Vehicle, 2012

LCA - CAR

2013 Gas, Electric & Hybrid car comparison

		Luxur	y cars		
NAME OF CAR	ENGINE TYPE	PRICE	MPG	RANGE	REFUEL TIME
MERCEDES BENZ E CLASS	gas	^{\$} 51,000	City: Hwy:	437 miles on a full tank	Minutes at a gas station
TESLA MODEL S	electric	^{\$} 69,900	City: Hwy: 94 97	208 miles	10 hours at 240 volts
NFINITI M HYBRID	hybrid	^{\$} 54,750	City: Hwy: 27 32	465 miles on a full tank	Minutes at a gas station

Affordable midsize cars

		<pre>////////////////////////////////////</pre>			·····
NAME OF CAR	ENGINE TYPE	PRICE	MPG	RANGE	REFUEL TIME
HYUNDAI SONATA	gas	^{\$} 20,895- ^{\$} 27,595	City: Hwy: 24 35	466 miles on a full tank	Minutes at a gas station
NISSAN LEAF	electric	^{\$} 28,800- ^{\$} 34,840	City: Hwy:	75 miles on a full charge	7 hours at 240 volts
FORD FUSION HYBRID	hybrid	^{\$} 27,200- ^{\$} 32,100	^{Сіtу: Нwy:} Ч7 Ч7	571 miles on a full tank	Minutes at a gas station

125,000 120,000 115,000 110,000 105,000 100,000 95,000 90,000 85,000 80,000 75,000 70,000 65,000 60,000 55,000 50,000 YEAR 10 MERCEDES ZECLASS TESLA MODEL S INFINITI M HYRRIE Price for car + annual operating costs (Luxury cars) 95,000 90,000 85,000 80,000 75,000 70,000 65,000 \$ 60,000 55,000 50,000 45,000 40,000 35,000 30,000 25,000 20,000 YEAR 10

(Affordable midsize cars)

Mpg (mile per gram)

Ref. Nowsourcing, 2013

LCA in Solar Power Generation System

Calculate and select efficient system using LCA Quiz : Select the most efficient system among the different kind of light bulbs after 25 **Power Generation:** Solar Panel year. In daytime (5 hr) Required total number of bulbs: 100 or or In night time

(6 hr)

Energy Storage: Battery

Power Consumption: Light Bulb

Power Consumption Components (Light Bulb)

- LED
 - Price: 8 USD
 - Life time: 15 years
 - Power : 7.2 W
 - 650-700 Lumens
- Fluorescent Lamp
 - Price: 4 USD
 - Life time : 5 years
 - Power : 14 W
 - 700 Lumens
- Incandescent Lamp
 - Price: 1 USD
 - Life time: 1 year
 - Power: 60 W
 - 700 Lumens

(The power of each bulb is set to have same brightness)

Maintenance Components

- Battery
 - Price: 380 USD
 - Life time: 5 years
 - Capacity : (12 V, 140 Ahr)

- Solar Panel
 - Price: 162 USD
 - Generation capacity: 120 W/hr
 - Life time: 20 years

Hint : make the plot of Time vs. Cost

Basic DFE methods: design guidelines

Paper cup

Mug cup

	Paper Cups (2 Per Day X 7 Billion X 365)	Ceramic Cups
Total Cups	5.1 Trillion	7 Billion
Embodied Energy	2.8 Trillion MJ	98 Billion MJ
Energy per year to wash	N/A	919 Billion MJ
Total Energy	2.8 Trillion MJ	1.01 Trillion MJ
Water to produce	2.5 Trillion L	N/A
Water per year to wash	N/A	2.7 Trillion L
Total water	2.5 Trillion L	2.7 Trillion L

Ref. Institute for lifecycle energy analysis

Basic DFE methods: design guidelines

- Product Design (Otto)
- Simple and effective when implemented
- Consult the guideline for each developed concept and after embodiment of the concept

TABLE 15.1. PRODUCT STRUCTURE GUIDELINES

Guideline

Design a product to be multifunctional.

Minimize the number of parts. Create multifunctional parts.

- Avoid separate springs, pulleys, or harnesses. Instead, embed these functions into parts.
- Make designs as modular as possible, with separation of functions.
- Design a reusable platform and reusable modules.
- Locate unrecyclable parts in one subsystem that can be quickly removed.
- Locate parts with the highest value in easily accessible places, with an optimized removal direction.
- Design parts for stability during disassembly.
- In plastic parts, avoid embedded metal inserts or reinforcements.
- Access and break points should be made obvious. Specify remanufactured parts.
- Specify reusable containers for shipping or consumables within the product.
- Design power-down features for different subsystems in a product when they are not in use.

Lump individual parts with the same material.

More ecoefficient than many unique-function products. Reduces disassembly time and resources. Reduces disassembly time and resources.

Allows options of service, upgrade, or recycling.

Allows options of service, upgrade, or recycling. Speeds disassembly.

Enables partial disassembly for optimum return.

Manual disassembly is faster with a firm working base. Creates the need for shredding and separation.

Logical structure speeds disassembly and training. Stimulate demand for remanufacturing, reducing raw material consumption.

Reduces raw material consumption.

Eliminate unnecessary power consumption for idle components.

Eliminates the need for disassembly during recycling. Neighbor parts may be ground or melted as a group.

Reason

TABLE 15.2. MATERIAL SELECTION GUIDELINES

Guideline	Reason
Avoid regulated and restricted materials.	They are high impact.
Minimize the number of different types of material.	Simplifies the recycling process.
For attached parts, standardize on the same or a compatible material. Eliminate incompatible materials.	Reduces the need for disassembly and sorting.
Mark the material on all parts.	Many materials' value is increased by accurate identification and sorting.
Use recycled materials.	Stimulate the market for material that has been recycled.
Use materials that can be recycled, typically ones as pure as possible (no additives).	Minimize waste; increase the end-of-life value of the product
Avoid composite materials.	Composites are inherently not pure materials, and so not amenable to recycling.
Use high strength-to-weight materials on moving parts.	Reduce moving mass and therefore energy consumption.
Use low-alloy metals that are more recyclable than high-alloy ones.	More pure metals can be recycled into more-varied applications.
If the same base metal can be used, different metals can be fastened.	Aluminum, steel, and magnesium alloys are readily separated from shredder output and recycled.
Hazardous parts should be clearly marked and easily removed.	Rapidly eliminate parts of negative value.

TABLE 15.3. LABELING AND FINISH GUIDELINE

Guideline	Reason
Ensure compatibility of ink where printing is required on parts.	Maintain maximum value of recovered material.
Eliminate incompatible paints on parts—use label imprints or even inserts.	Many label-removal operations for paints cause part deterioration.
Use unplated metals that are more recyclable than plated.	Some plating can eliminate recyclability.
Use electronic part documentation.	These parts can be reused.

TABLE 15.4. FASTENING GUIDELINES

Guideline	Reason		
Minimize the number of fasteners.	Most disassembly time is fastener removal.		
Minimize the number of fastener removal tools needed.	Tool changing costs time.		
Fasteners should be easy to remove.	Save time in disassembly.		
Fastening points should be easy to access.	Awkward movements slow down manual disassembly.		
Snap fits should be obviously located and able to be torn apart using standard tools.	Special tools may not be identified or available.		
Try to use fasteners of material compatible with the parts connected.	Enables disassembly operations to be avoided.		
If two parts cannot be compatible, make them easy to separate.	They must be separated to recycle.		
Eliminate adhesives unless compatible with both parts joined.	Many adhesives cause complete contamination of parts for material recycling.		
Minimize the number and length of interconnecting wires or cables used.	Flexible elements slow to remove; copper contaminates steel, etc.		
Connections can be designed to break as an alternative to removing fasteners.	Fracture is a fast disassembly operation.		

Life Cycle Assessment (LCA)

▼ Figure 15.9.

Typical material and energy flows over a product life cycle.

More systematic analysis of a product

Example of cost parameters

Parameter	Alternative A	Alternative B
General information		
Car type	Car type A, new, with a small and efficient motor	Care type B, five years old, low investment
Weight	1450 kg	1750 kg
Functionality	5 seats, ABS	7 seats, 4 wheel drive
General cost		
Investment	25 000 €	12 000 €
Cost for product use		
Driving distance per year	20 000 km/year	20 000 km/year
Liter gasoline/100 km	6 L/100 km	10 L/100 km
Gasoline consumption over	6000 liter	10 000 liter
5 years		
Fuel and oil cost (over 5 years)	6000 €	10 000 €
Insurance (over 5 years)	6000 €	8000 €
Tax (over 5 years)	5000 €	6000 €
Repair (over 5 years)	2000 €	8000 €
Cost concerning end of life	a sin al a	The second second second
Value after 5 years	12 000 €	2000 €
Total costs over 5 years	32 000 €	42 000 €
Costs per 1 km	0.32 €/km	0.42 €/km

Table 2 Evaluation of two alternatives with cost parameters.

Kyoto Protocol

 The Kyoto Protocol is a protocol to the United Nations Framework Convention on Climate Change (UNFCCC or FCCC), aimed at fighting global warming.

Kyoto Protocol

The five principal concepts

- <u>Commitments for the Annex I Parties</u>.

(Reduction of greenhouse gases that are legally binding for Annex I Parties).

- <u>Implementation</u>. In order to meet the objectives of the Protocol, Annex I Parties are required to prepare policies and measures for the reduction of greenhouse gases in their respective countries.
- Minimizing Impacts on Developing Countries by establishing an adaptation fund for climate change.
- Accounting, Reporting and Review in order to ensure the integrity of the Protocol.
- <u>Compliance. Establishing a Compliance Committee to enforce</u> <u>compliance with the commitments under the Protocol</u>.

Carbon footprint

- Carbon footprint has historically been defined as "the total set of greenhouse gas (GHG) emissions caused by an organization, event, product or person.
- Carbon footprint originates from ecological footprint (developed by Rees and Wackernagel in the 1990s)
- Carbon footprint can be measured by undertaking a GHG emissions assessment
- The mitigation of carbon footprints through the development of alternative projects (solar or wind energy or reforestation) represents one way of reducing a carbon footprint. Carbon offsetting.

General principle of LCA

1. Goal & scope definitions phase

- Goal definition
 - Why perform LCA?
 - Who are the target audiences?
 - What is the application of the LCA results?
- Scope definition
 - Defining product system and setting its boundary
 - Defining product function and its unit
 - Setting data quality requirements and data parameters

Example of crude oil

Figure 9 Product system of the fuel (gasoline).

2. Inventory analysis phase

Data collection for input and output

Category	Parameter		
Emissions to air	CO_2, CH_4		
Emissions to water	Phenol, Phosphate, Nitrate		
Emissions to land	Solid waste		
Resources	Iron ore, Crude oil		

Table 7 Examples of data category and parameter.

Table 8 Example of inventory analysis results of 1 kg fuel (unit: g/kg fuel).

Inventory parameter	Use of raw materials	Manufacture	Distribution	Product use	Total
Crude oil	1173.00	0.00	0.00	0.00	1173.00
CO ₂	336.72	449.28	27.20	1880.50	2693.70
CH ₄	4.69	0.07	0.05	0.00	4.81
NO _x	1.74	0.97	0.25	1.55	4.51

3. Impact assessment phase

- Mandatory elements –classification and characterization
- Optional element normalization and weighting

Table 9 Example of classification of the fuel: linking betweeninventory parameter and impact category.

Inventory parameter	Impact category		
CO ₂	GW		
CH ₄	GW, POC		
NO _x	AD, EU, POC		
Crude oil	ARD		

Table 10 Characterized impact of the fuel (for global warming impact category).

Inventory parameter	Load (g/kg fuel)	Factor $(g CO_2 eq/g)$	Characterized impact (g CO ₂ eq/kg fuel)
$\overline{CO_2}$	2693.70	1	2693.70
CH ₄	4.81	23	110.63
Total		t	2804.33

4. Interpretation phase

Inventory parameter	Use of raw materials	Manufacture	Distribution	Product use	Total
CO ₂	336.72	449.28	27.20	1880.50	2693.70
CH ₄	107.87	1.61	1.15	0.00	110.63
Total	444.59	450.89	28.35	1880.50	2804.33
	16%	16%	1%	67%	100%

Figure 10 Key issues identified for the fuel based on weighted impact.

Case study of water kettle

Table 6 Environmental parameters with quantified information including otherrealistic scenarios and additional information of the water kettle.

Environmental parameters – g	eneral information				
Name of the product Water kettle					
Weight	Weight 0.87 kg (including packaging)				
Volume	$200 \times 200 \times 350 \text{ mm}$				
Supply part's	Heater and cable				
environmental performance					
Lifetime	3 years				
Functionality	Heating and boiling water with automatic switch off				
Environmental parameters – li	ife cycle related information				
Use of raw material	salass if the stephantoi-one schwart, these will be made of				
Materials used	410 g PP, 120 g steel, 20 g PA, 72 g PVC, 48 g Cu, 200 g cardboard				
Problematic materials	PVC in cables				
Manufacture					
Production technology	Injection molding (housing: 330 g PP; lid: 80 g PP; switch unit: 20 g PA)				
	Cutting and bending (120 g steel)				
	Extrusion (72 g PVC)				
	Stranded cable (48 g Cu)				
	Cutting and gluing of box (200 g cardboard)				
Production waste	None				

Case study of water kettle (2)

Distribution	and the second
Distribution	Single use cardboard box
Transportation	3000 km by 40 ton truck
	5000 km by 40 ton truck
Product use	
Usability	No flexibility in moving the kettle due to fixed cable
Energy consumption	Boiling 0.5 liter water requires 0.0545 kWh, for 2250 uses this equals 122.6 kWh
Waste (generated)	None
Noise and vibrations	None
Emissions	None
Maintenance	To clean the water kettle especially from calcium deposit (descaling)
Reparability	Not possible
End of life	
Fasteners and joints	Snap fit and screws
Time for disassembly	Disassembly is not possible
Rate of reusability	Reuse of parts is not possible
Rate of recyclability	50% of the total weight of the product
Information about other rea	alistic scenarios
Re-boil (product use)	The energy consumption per use can be about 20% higher: this can occur with a probability of about 50%

Case study of water kettle (3)

Table 6 (Continued)			
Warm-up too much water (product use)	The energy consumption per use can be about 100% higher: this can occur with a probability of about 25%		
Additional information			
Business case	Selling water kettles on the European market; no additional service and maintenance is provided		
Current sales per year	91 800 (reference year is 2003)		

LCA in detail

- Case study of a water kettle
- Product composition

Component	Material	Weight (g)	Weight (%)
Housing	PP	330.00	38
Packaging	Card board	200.00	23
Heater	Stainless steel	120.00	14
Lid	PP	80.00	9
Cable (PVC)	PVC	72.00	8
Cable (Cu)	Cu	48.00	6
Switch unit	PA	20.00	2
Total		870.00	100

Table 12 Product composition of a water kettle.

Table 13 Life cycle data of a water kettle.

Life cycle data

Life cycle	Description	Data
Use of raw materials	See Table 12	See Table 12
Manufacture (including components manufacturing)	Electricity was the only input to the manufacturing of components and assembly of water kettle.	Electricity consumption for the manufacturing of housing, packaging and heater was 0.5, 0.2 and 1.5 kWh, respectively. There are two types of product assembled, model A and model B. Production volume of model A and B is 7650 and 8900 units/month, respectively. Total electricity consumed in manufacturing (assembling) of both models was 10 000 kWh per month.
Distribution	The distribution is done within Europe by 40-ton trucks.	The average distance for transport is 3000 km.
Product use	Use scenario: heating ½ liter of water to prepare tea or coffee in an office, 3 times a day, 5 days a week, 50 weeks a year. The total uses add up to 2250 times over the 3 year lifetime of the product.	Electricity consumed is 0.0545 kWh per use.
End of life	Disposal via municipal waste route.	The ratio of recycling, incineration, and landfill is 50%, 20%, and 30%, respectively.

1. Goal and scope definition

- Goal definition
 - Why: to generate environmental profile data and to identify key issues of the water kettle
 - Who: product designers, developers, and managers within the company, and retail and institutional level consumers as well as B2B consumers in the supply chain
 - What: redesign of the reference product

1. Goal and scope definition (2)

- Scope definition
 - Function
 - System boundary
 - Table 14, figure 11

Table 14 Components of the water kettle included in the product system (marked in bold).

Component	Material	Weight (g)	Weight	Cumulative weight
			percent (%)	percent (%)
Housing	PP	330.00	38	38
Packaging	Card board	200.00	23	61
Heater	Stainless steel	120.00	14	75
Lid	PP	80.00	9	84
Cable (PVC)	PVC	72.00	8	92
Cable (Cu)	Cu	48.00	6	98
Switch unit	PA	20.00	2	100
Total		870.00	100	

Figure 11 Process tree of the water kettle.

1. Goal and scope definition (3)

Data category

Table 1.	5 Data	category	and	parameters.
----------	--------	----------	-----	-------------

Broader data category	Specific data category	Parameters (illustrative)
Input	Raw materials	Crude oil, Iron ore
	Ancillary materials	Solvent, Process materials
	Energy	Electricity, LNG
Output	Products	Water kettle
-	Co- and/or by-products	Slag
	Emissions to air	CO_2 , Methane
	Emissions to water	Phenol; Organic carbon
	Emissions to land	Solid waste, Heavy metals

2. Life cycle inventory analysis

- Data collection
 - Preparing for data collection
 - Data questionnaire format: table 16

Tuble 10 C	me possibi	e jorm oj aara g	fuestionnaire jormai wiin	
	illusi	trative data for	a heater.	
Product name: Heater Contact details: Mr. John				
Manufacturer: Compa	any			
Data collection period	1: from Jan	uary 1, 2003 to	December 31, 2003	
Manufacturing process	s information	ion: it should in	clude process schematic diagram	
Input data				
Raw and ancillary ma	terials and	energy used		
Parameter	Unit	Quantity	Country of origin	
Stainless steel	kg	0.5	Korea	
Transport				
Transport mode	Distance	e traveled	Mass transported	
40 ton trailer truck	3000 kn	n	20 ton	
Output data				
Emissions to Air, Wat	er, and Lar	nd		
Parameter	Unit		Quantity	
CO ₂	g/kg pro	oduct	3650	

Table 16 One possible form of data questionnaire format with

2. Life cycle inventory analysis (2)

Data collection

Table 17 Possible data sources for various data categories.

Input data			
Raw and ancillary materials, parts and components	Purchasing records, bill of materials, process schematic diagram, production records.		
Energies	Source of electricity (where does the electricity come from?), amount of electricity, fuels and steam used.		
Output data			
Emissions to air, water and land Products and co-/by-products	Measured emission data, calculated emission data, legal discharge limits. Amount of products, by-/co-products (unit or mass		
	or volume) manufactured, unit product weight and wholesale price.		

2. Life cycle inventory analysis (3)

Data base

	Parameter	Category	Unit	Total
PP	Crude oil	Raw	g	1200
(1 kg)	CO_2	Air	g	1800
	NO_x (as NO_2)	Air	g	10
	SO_x (as SO_2)	Air	g	11
	VOC	Air	g	9.60
Cardboard	Crude oil	Raw	g	114
(1 kg)	CO_2	Air	g	467
	NO _x	Air	g	3.96
Stainless steel	Crude oil	Raw	g	294
(1 kg)	Coal	Raw	g	779
	Chromium	Raw	g	203
	Iron ore	Raw	g	655
	CO_2	Air	g	3650
Electricity	Coal	Raw	g	50
(1 kWh)	CO_2	Air	g	290
	Methane	Air	g	0.53
	SO ₂	Air	g	1.18
Transport	Crude oil	Raw	g	28
(40 t Truck, 1 ton-km,	CO	Air	g	0.51
50% loaded)	CO_2	Air	g	93
Incineration	Coal	Raw	g	0.16
(1 kg waste)	Crude oil	Raw	g	0.70
	CO_2	Air	g	3.56
	NO_x (as NO_2)	Air	g	0.13
Landfill	Crude oil	Raw	g	0.95
(1 kg waste)	CO_2	Air	g	19
	Methane	Air	g	1.97
	SO_x (as SO_2)	Air	g	0.03
Recycling	Coal	Raw	g	7.88
(1 kg waste)	Crude oil	Raw	g	-75
	Iron (ore)	Raw	g	-106
	CO_2	Air	g	-200

(Note: A negative value for the recycling means that there is an environmental benefit or positive environmental impact accrued from recycling, not adverse environmental impacts.)

2. Life cycle inventory analysis (4)

Data computation

Figure 12 Process tree showing fictitious product system.

2. Life cycle inventory analysis (4)

Data allocation

Type of model	Unit produced (unit/month)	Sale price (Euro/piece)	Total sale price (Euro)	Allocation factor (%)
Model A	7 650	18	137 700	38.2
Model B	8 900	25	222 500	61.8
Total	16 500	43	360 200	100.0

Table 19 Allocation factor based on economic value.

2. Life cycle inventory analysis (5)

Special case of allocation: recycling

Figure 13 Simplified product system with waste recycling.

2. Life cycle inventory analysis (6)

Allocation of environmental load

Life cycle stage	Allocation of EL due to recycling	EL with recycling (points/kg)	EL without recycling (points/kg)
Use of raw	Net virgin material use =	120	300
materials	$300/\text{kg} \times 0.4 \text{ kg} = 120$		
End of life	Waste disposed of $=$	80	200
(disposal)	$200/\text{kg} \times 0.4 \text{ kg} = 80$		
End of life	Amount recycled $=$	60	0
(Recycling)	$100/\text{kg} \times 0.6 \text{ kg} = 60$		
Sum		260	500

Table 20 Environmental load of each life cycle stage due to recycling.

2. Life cycle inventory analysis (7)

: summary

- Process tree with material and fractional contribution: See Figure 11.
- The LCI database: see Table 18.
- Life cycle inventory data collection and calculation
- Data from the use of raw materials stage (extraction of resources from nature to production of raw and ancillary materials)
 - Amount of raw material required for the three components PP for housing (w/handle) = 330 g
 - Cardboard for packaging = 200 g
 - Stainless steel for heater = 120 g
 - Calculation of the EL of the production of PP, cardboard, and stainless steel for the three components
 - ${\sf DB}_{\sf PP}$ /kg imes 0.33 kg/housing
 - $\text{DB}_{\text{cardboard}}/\text{kg} imes 0.2$ kg/packaging
 - ${\sf DB}_{\sf stainless \ \sf steel}/kg imes 0.12$ kg/heater
 - Total EL from the use of raw materials stage
 - Sum of the EL from the production of PP, cardboard, and stainless steel for housing, packaging and heater. Here, as we took the 75% decision rule for mass inclusion, we must adjust the data for the three components.
 - Adjusted EL = actual EL \times 1/decision rule for mass inclusion factor = (EL (PP) + EL (cardboard) + EL (stainless steel))/0.75
- II. Data from manufacture stage (components manufacturing and water kettle assembly)

Electricity was the only energy input to the assembly of water kettle, and manufacturing of housing, packaging, and heater. In addition, there were no other outputs except the housing, packaging, and heater from each process. In other words, wastes and scraps were not generated during the manufacture stage. Clearly, this is an oversimplified case.

- Calculation of electricity consumed and EL for Model A Electricity consumed for model A = 10 000 kWh/month \times (0.38)/ (7650 unit/month) = 0.5 kWh/water kettle
- EL of water kettle assembly = $DB_{electricity}$ /kWh \times 0.5 kWh/water kettle
- Calculation of EL of the three components.
 Electricity consumed for housing = 0.5 kWh
 Electricity consumed for packaging = 0.2 kWh
- Electricity consumed for heater = 1.5 kWh
- EL of housing = $DB_{electricity}$ /kWh \times 0.5 kWh/housing
- EL of packaging = $DB_{electricity}$ /kWh \times 0.2 kWh/packaging
- EL of heater = DBelectricity/kWh \times 1.5 kWh/heater
- Total EL from the manufacture stage Sum of the EL from the water kettle assembly, and manufacturing of housing, packaging and heater.

Here, as we took the 75% decision rules for mass inclusion, we must adjust the data for the three components.

Adjusted EL = Water kettle assembly EL + (sum of EL for the manufacturing of housing, packaging and heater manufacturing)/0.75

- III. Data from distribution stage
 - Distance traveled = 3000 km
 - Mode of transport = 40 ton truck
 - EL of the distribution = DB 40 ton truck/(ton-km) \times distance traveled (3,000 km) \times water kettle weight (0.87 kg/(1,000 kg/ton))
- IV. Data from product use stage
 - Electricity used per use = 0.0545 kWh
 - Total number of uses = 2250 uses
 - EL of the product use = $DB_{electricity}$ /kWh imes 0.0545 kWh/use imes 2,250 uses
- V. Data from end of life stage
 - Percent of waste incinerated = 20%
 - Percent of waste landfilled = 30%
 - Percent of waste recycled = 50%
 - EL of incineration = DB_{incineration}/kg \times 0.2 \times 0.87 kg/water kettle
 - EL of landfilling = $DB_{landfill}/kg \times 0.3 \times 0.87$ kg/water kettle
 - EL of recycling = $DB_{recycling}/kg \times 0.5 \times 0.87$ kg/water kettle
- VI. LCI results of the water kettle

Sum of the EL from the use of raw materials, manufacture, distribution, product use and end of life stage is the life cycle inventory results of the water kettle. See Table 21.

(Continued)

2. Life cycle inventory analysis (8)

Results of life cycle inventory analysis

Parameter	Use of raw	Manufacture	Distribution	Product	End of life	Total
	materials			use	1996 - 1996 - 1997 -	
Crude oil	605.48		73.34		-63.71	615.11
Coal	124.64	169.94		6069.94	7.00	6371.52
Chromium	32.48					32.48
Iron	104.80				-92.22	12.58
CO_2	1 500.53	995.59	241.43	35 561.25	-154.93	38 143.87
Methane		1.83		65.24	1.71	68.78
CO				1.33		1.33
VOC	4.22					4.22
NO _x (Air)	5.46				0.11	5.57
SO _x (Air)	4.84		4.05	144.70	0.03	153.62

Table 21 Life cycle inventory analysis result of the water kettle (unit: g/water kettle).

3. Life cycle impact assessment

Global warming (GW)

- Greenhouse gases such as CO₂
- Kyoto protocol is being ratified

Ozone layer depletion (OD)

- CFC 11 (Freon, a refrigerant)
- Skin cancer and mutation of plants

Acidification (AD)

- Increase in proton or hydrogen ion concentration in water by NO_x and SO_x

3. Life cycle impact assessment

- Eutrophication (EU)
 - Increase in nutrient (nitrogen and phosphorous)
 - Excessive growth of Algae

- Photochemical oxidant creation (POC)
 - Smog
 - Hydrogen carbon from automobile

Abiotic resource depletion (ARD)

 Consumption of non-renewable resources such as crude oil

Real Discovery Trend

3. Life cycle impact assessment

Figure 14 Relationship between life cycle inventory analysis and life cycle impact assessment.

3. Life cycle impact assessment (2)

Classification

Parameter		Im	pact categor	ries	
	\overline{GW}	AD	EU	POC	ARD
Crude oil	면비안상	전 것 같은		ALL AND	1
Coal					1
Chromium					1
Iron					1
CO ₂	1				
Methane	1			1	
CO				1	
VOC				1	
NO _x		1	1	1	
SO _x		1			

EU: eutrophication POC: photochemical oxidant

3. Life cycle impact assessment (3)

- Cause-effect chain
 - Example of acidification

Figure 15 Cause-effect chain of acidifying gases in the environment.

3. Life cycle impact assessment (4)

Typical impact categories

Table 23 Name and unit of characterization factor of typical impact categories.

Impact category	Characterization factor name	Characterization factor unit
Global warming	Global warming potential (GWP)	g CO ₂ -eq/g
Ozone layer depletion	Ozone depletion potential (ODP)	g CFC11-eq/g
Acidification	Acidification potential (AP)	g SO ₂ -eq/g
Eutrophication	Eutrophication potential (EP)	g PO ₄ ³⁻ -eq/g
Photochemical oxidant	Photochemical oxidant creation potential (POCP)	g C ₂ H ₄ -eq/g
Abiotic resource depletion	Abiotic resource depletion potential (ADP)	1/yr*

(Note: * is the unit from U_j/D_j , where U_j = worldwide use of the jth resource, kg/yr; D_j = the size of the deposit of the jth resource, economically extractable, kg)

3. Life cycle impact assessment (5)

Characterization factors

Parameter		Cha	racterization fa	ctor	
	GWP	$AP (g SO_2)$	<i>EP</i> ($g PO_4^{3-}$	POCP	ADP (1/yr)
	$(g CO_2 eq/g)$	eq/g)	eq/g)	(g ethene eq/g)	
Crude oil					0.0248
Coal					0.00344
Chromium					0.00381
Iron					0.00721
CO_2	1.00				
Methane	23.00			0.006	
CO				0.027	
VOC				0.416	
NO _x		0.70	0.13	0.028	
SO _x		1.00			

Table 24 Characterization factors used in the water kettle case.

3. Life cycle impact assessment (6)

CI = (load of inventory parameter) x (characterized factor of parameter)

Parameter	Load				Characte	rized Impo	act (CI)				
	(from Table 21)	(g CO ₂ ke	GW eq/water ttle)	AI (g SO ₂ ea kett	D q/water le)	E (g PO) water	U ³⁻ eq/ kettle)	PC (g ethe water	DC ne eq/ kettle)	ARD (g/wat kettle-y) er yr)
		GWP	CI	AP	CI	EP	CI	POCP	CI	ADP	CI
Crude oil	615.11									0.0248	15.25
Coal	6371.52									0.00344	21.92
Chromium	32.48									0.00381	0.12
Iron	12.58									0.00721	0.09
CO ₂	38 143.87	1.00	38 1 4 3.87								
Methane	68.78	23.00	1581.94					0.006	0.41		
CO	1.33							0.027	0.04		
VOC	4.22							0.416	1.76		
NO _x	5.57			0.70	3.90	0.13	0.72	0.028	0.16		
SO _x	153.62			1.00	153.62						
Total			39 725.81		157.52		0.72		2.37		37.38

Table 25 Characterized impact of the water kettle.

Impac	rt category		L	ife cycle stage			Total
		Use of raw materials	Manufactur	e Distribution	Product use	End of life	
GW	g CO ₂ eq/ water kettle	1500.53	1037.65	241.43	37 061.70	-115.50	39725.81
AD	g SO ₂ eq/ water kettle	8.66	4.05		144.70	0.11	157.52
EU	g PO _x ^{3–} eq/ water kettle	0.71				0.01	0.72
POC	g ethene eq/ water kettle	1.92	0.00	0.04	0.40	0.01	2.37
ARD	g/water kettle-yr	16.32	0.58	1.82	20.88	-2.22	37.38

Table 26 Characterized impact of the water kettle per life cycle stage.

4. Life cycle interpretation

Table 27 Characterized impact of the <u>global warming</u> impact category of the water kettle (unit: $g CO_2$ -eq/water kettle).

Inventory		Sum				
parameter	Use of raw materials	Manufacture	Distribution	Product use	End of life	
$\overline{CO_2}$	1 500.53	995.59	241.43	35 561.25	-154.93	38 143.87
CH_4		42.06	~	1 500.45	39.43	1 581.94
Sum	1 500.53	1 037.65	241.43	37 061.70	-115.50	39725.81

Table 28 <u>Percent</u> contribution by each entry on the matrix to the total global warming impact category of the water kettle (unit: %).

Inventory		Unit processes and activities						
parameter	Use of raw materials	Manufacture	Distribution	Product use	End of life			
$\overline{\mathrm{CO}_2}$	3.77	2.51	0.61	89.52	-0.39	96.02		
CH_4		0.10		3.78	0.10	3.98		
Sum	3.77	2.61	0.61	93.30	-0.29	100		

Above 1% impact is considered as a significant issue

4. Life cycle interpretation (2)

- Normalization
 - N: an impact of an impact category from all the different products in a given geographical region
 - Normalization reference of an impact category, g x –eq/(person equivalent-year)
 - N = Σ[(load of a parameter per year) x (characterization factor of the parameter)] / (population size of the geographical region)
- Normalized impact
 - NI = CI / N
 - Represents degree of relative impact caused by the product to the total impact of the geographical region
- Normalization enables direct comparison of the magnitude of the impact among different categories

4. Life cycle interpretation (3)

- Normalization reference (per person equivalent year) (1995 data)
 - GW: 5660 kg CO₂-eq
 - AD: 56.4 kg SO₂-eq
 - EU: 8.9 kg PO₄³⁻-eq
 - POC: 7.4 kg ethene-eq
 - ARD: 18.7 kg/year
 - (MOCIE 2002)

→ Table 26

GW: 1500.53 g CO_2 -eq/5660kg = 265.12 e-6

Table 29 Normalized impact of water kettle per life cycle stage.

Impact		Total (millionth pe-yr/water kettle)						
category	Use of raw materials	Manufacture	Distribution	Product use	End of life			
GW	265.12	183.33	42.66	6548.00	-20.41	7018.70		
AD	153.52	71.83		2565.60	1.95	2792.90		
EU	79.78				1.12	80.90		
POC	259.46	0.00	5.41	54.05	1.35	320.27		
ARD	872.49	31.26	97.33	1116.58	-118.72	1998.94		

4. Life cycle interpretation (4)

- Weighting
 - Assignment of relative significance to the impact categories based on social, ethical, and political values
- Weighted impact
 - WI = weight of the impact category x NI of the impact category
- Weights can be determined by panel members

Impact category	Normalized impact (millionth pe-yr/ water kettle)	Weight	Weighted impact (millionth pe-yr/ water kettle)	Fraction (%)
GW	7018.70	0.29	2035.42	65.76
AD	2792.90	0.16	446.86	14.44
EU	80.90	0.14	11.33	0.37
POC	320.27	0.13	41.64	1.35
ARD	1998.94	0.28	559.70	18.08
Total			3094.95	100.00

Table 30 Weighted impact of the water kettle per impact category.

4. Life cycle interpretation (5)

- Weighted impact for each life cycle
- Normalized impact in Table 29 x weight

Impact	Use of raw	Manufacture	Distribution	Product	End of	Total
category	materials			use	life	
GW	76.03	54.02	12.37	1898.92	-5.92	2035.42
AD	24.73	11.32		410.50	0.31	446.86
EU	11.17				0.16	11.33
POC	33.73	0.00	0.70	7.03	0.18	41.64
ARD	242.37	10.68	27.25	312.64	-33.24	559.70
Total	388.03	76.02	40.32	2629.09	-38.51	3094.95

Table 31 Weighted impact of the water kettle per life cycle stage (unit: millionth pe-yr/water kettle).

4. Life cycle interpretation (6)

- Completeness check
 - Identify each stage in the process tree

Unit process	Complete?	Action required?
PP production	А	
Housing	В	Check inventory
Stainless steel production	А	
Heater manufacturing	В	Check inventory
Cardboard production	A	
Packaging	В	Check inventory
Electricity	А	
Manufacture	Α	
Distribution	С	Check inventory
Product use	В	Check inventory
Incineration	С	Check inventory
Landfill	С	Check inventory
Recycling	С	Check inventory

Table 32 Completeness check result of the water kettle.

(Note: A represents 100% and E 0% completeness, all qualitative)

4. Life cycle interpretation (7)

Sensitivity and consistency check

Table 33 Sensitivity check result of the water kettle for the allocation method.

Allocation criteria	Weighted impact		
	(unit: millionth pe-yr/water kettle)		
Economic criteria	3094.95		
Mass criteria	3123.41		
Sensitivity (%)	0.92		

Item	Che	ck	Action required?
Data source	Database	OK	No action
Data accuracy	Good	OK	No action
Database age	5 years	OK	No action
Characterization factor	OK	C	No action
Characterization method	OK		No action

Table 34 Consistency check result of the water kettle.

Eco-design pilot's assistant

http://www.ecodesign.at/assist/assistent

Assistant Description Raw Material Manufacture Distribution Product Use End of Life Result The ECODESIGN assistant will support you in finding suitable strategies to improve your product. Please complete the six forms below and indicate key data of your product. Product Life Time years As a result you will be able to identify the product type and appropriate ECODESIGN improvement strategies; a direct link gets you to the ECODESIGN PILOT checklists. Functional Unit Functional Unit The functional unit of a product describes the product smain function and indicates a quantity (e.g. washing 5 kg laundy, heating one liter of water,) The functional unit of a product describes the product smain function and indicates a quantity (e.g. washing 5 kg laundy, heating one liter of water,)					PILOT ASSISTANT
Description ► Raw Material Manufacture Distribution Product Use End of Life Result The ECODESIGN assistant will support you in finding suitable strategies to improve your product. Please complete the six forms below and indicate key data of your product. Product Name Product Life Time years As a result you will be able to identify the product type and appropriate ECODESIGN improvement strategies; a direct link gets you to the ECODESIGN PILOT checklists. Product Life Time years The data you indicate will not be stored or used in any form whatsoever. The functional unit of a product describes the product's main function and indicates a quentity (e.g. washing 5 kg laundry, heating one liter of water) The functional form	Assistant				
 The ECODESIGN assistant will support you in finding suitable strategies to improve your product. Please complete the six forms below and indicate key data of your product. As a result you will be able to identify the product type and appropriate ECODESIGN improvement strategies; a direct link gets you to the ECODESIGN PILOT checklists. The data you indicate will not be stored or used in any form whatsoever. Product Name Product Life Time years Functional Unit The functional unit of a product describes the product's main function and indicates a quantity (e.g. washing 5 kg laundry, heating one liter of water,) goto next form 	Descriptio	on ⊳	Raw Material Manufacture	Distribution Product Use End of I	Life Result
	The ECODESIGN assistant wi finding suitable strategies to in Please complete the six forms key data of your product. As a result you will be able to type and appropriate ECODES strategies; a direct link gets yo ECODESIGN PILOT checklists The data you indicate will not t any form whatsoever.	ill support you in nprove your product. s below and indicate identify the product SIGN improvement ou to the s. be stored or used in	Product Name Product Life Time years Functional Unit The functional unit of a prod quantity (e.g. washing 5 kg lau goto next form	fuct describes the product's main function indry, heating one liter of water,)	n and indicates a

EN English DE Deutsch

î

Raw materials

terrespond and a	Metals	Plastics	Other materials
Class I	i disebili sin "on" so "ovan k Indese alti Avane all'angili a	n i para la na	ConcreteWood, solidPlaster
Class II	 Electric steel (secondary) Aluminum (secondary) Steel plate (90% recycled) 	anne by enstel 1963 developmen The only wa e ECODES IC Bened 1993 M	 Porcelain Glass, bottles (recycled) Sheet glass, (float glass) Glass fiber Linoleum Cardboard Paper (100% recycled) Glass, container – (new)
Class III	 Steel (80% primary) Steel (primary) Steel, low-alloy 	lind ssportfill hand ssportfill in a digt ben had spirt had so that had so tha	 Paper (65% recycled) Leather Rubber, green Caoutchouc Paper, free from chlorine Rubber, raw Coolant R134a Ammonia NH3 Fuel oil Gaseline, unleeded

Raw materials (2)

	Metals	Plastics	Other materials
Class IV	 Cast iron Sheet steel, galvanized Cast steel 	 PVC HDPE PP LDPE PPE/PS PS PET SAN 	 Rubber Latex Porcelain Cellulose Paper
Class V	 Copper (secondary) Lead (50% primary) Ferrochromium (53% Cr) 	 PB ABS PE, foam PUR, HR foam PVDC PU, non-rigid PUR PMMA (acrylic PC PA 6.6 (nylon) EP (epoxy resint PA (nylon) 	 Glass fiber reinforced plastics (GRP) Technical ceramic material
Class VI	 Steel, V2A: 18% Cr, 9% Ni Steel, V4A: 17% Cr, 12% Ni 	choten a material sajakydagang ter	• Carbon fiber

Raw materials (3)

	Metals	Plastics	Other materials
151	• Ferronickel (33% Ni)	a state and a state of the	
	• Zinc alloys		
	• Aluminum and Al-alloys		
	• Steel, high-alloy		
	(stainless)		
	Chromium		
	• Molybdenum		
	• Magnesium alloys		
	• Copper (primary)		
	and cables		
	• Metal powder		
Class VII	• Titanium alloys		sea fonder" - C mart
	 Copper alloys 		
	• Zinc		
	• Copper alloys, bronze		
	 Nickel and Ni-alloys 		
	• Silver		
Class VIII	Palladium	nutlein ha ezo	and in a sisterional bank
	• Platin		
	• Gold		2
	Rhodium		

Carbon Footprint Calculator

http://www.carbonfootprint.com/

Carbon Footprint Calculator

Language:	English (United Kingdom)	•	Why create an account?	
∎7 좋아평	🛃 5157명이 좋아합니다. 친구들	이 무엇을 좋아하는지 알아보려면 가입하기		
Welcome	e House Flights Car	Motorbike Bus & Rail Secondary Results		
		Welcome to the web's leading carbo	n footprint calculator	
100		First, please tell us where you live: [why?]		
	Country:	Korea, Republic of]	
Carbon footprint calculations are typically based on annual emissions from the previous 12 months. If you would like to calculate your carbon footprint for a different period use the calendar boxes below (optional):				
	from	to Save		
Next, sel Or, visit e	ect the appropriate tab above each of the tabs above to calo	to calculate the part of your lifestyle you are most i culate your full carbon footprint.	nterested in, e.g. your flights.	
Eollowing	vour calculation, you can of	feat / neutralise your emissions through one of our c	limate-friendly projects	

Solution for Quiz

Total Cost (USD)

61

Energy consumption Energy (MJ) ---LED ----- Fluorescent Lamp ----Incandescent Lamp 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Time (year)

Energy consumption Bulb considered only