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In This Lecture
 Learn what to consider in selecting right data 

structures
 Understand the need for ADT, and its difference 

from Data Structure
 Distinguish problem, algorithm, and program



U Kang (2016) 3

Goals of this Course

1. Reinforce the concept that costs and benefits 
exist for every data structure.

2. Learn the commonly used data structures.
 These form a programmer's basic data structure 

“toolkit.”

3. Understand how to measure the cost of a data 
structure or program.
 These techniques also allow you to judge the merits 

of new data structures that you or others might invent.
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The Need for Data Structures

 Data structures organize data
⇒ more efficient programs.

 More powerful computers
⇒ more complex applications.

 More complex applications demand more 
calculations.

 Complex computing tasks are unlike our everyday 
experience.
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Efficiency

 Choice of data structure or algorithm can make 
the difference between a program running in a 
few seconds or many days.

 A solution is said to be efficient if it solves the 
problem within its resource constraints.
 Space
 Time

 The cost of a solution is the amount of resources 
that the solution consumes.
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Selecting a Data Structure

Select a data structure as follows:
1. Analyze the problem to determine the basic 

operations that must be supported.
2. Quantify the resource constraints for each 

operation.
3. Select the data structure that best meets these 

requirements.
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Costs and Benefits

 Each data structure has costs and benefits.
 Rarely is one data structure better than another in 

all situations.
 Any data structure requires:
 space for each data item it stores,
 time to perform each basic operation,
 programming effort.
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Costs and Benefits (cont)

 Each problem has constraints on available space 
and time.

 Only after a careful analysis of problem 
characteristics can we know the best data 
structure for a task.

 Bank example:
 Start account: a few minutes
 Transactions: a few seconds
 Close account: overnight
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Some Questions to Ask

 Are all data inserted into the data structure at the 
beginning, or are insertions interspersed with 
other operations? (examples?)

 Can data be deleted?
 Are all data processed in some well-defined order, 

or is random access desired?
 E.g., Update all human names from “Firstname

Lastname” format to “Lastname, Firstname” format in 
a document collection

 E.g., look up previous fellowship information of a 
student L
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Selecting Data Structure

 Students’ previous GPA scores are located in the 
school’s database

 Task 1) Find all students whose GPA is B0 at Spring 
2016
 This is called “exact query”. Hash table is appropriate.

 Task 2) Find all students whose GPA is between 0.0 
~ 2.0
 This is called “range query”. B-tree is appropriate.
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Abstract Data Types

 Abstract Data Type (ADT): a definition for a 
data type solely in terms of a set of values and a 
set of operations on that data type.

 Each ADT operation is defined by its inputs and 
outputs.

 Encapsulation: Hide implementation details.
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Data Structure

 A data structure is the physical implementation of 
an ADT.
 Each operation associated with the ADT is 

implemented by one or more subroutines in the 
implementation.

 Data structure usually refers to an organization 
for data in main memory.

 File structure: an organization for data on 
peripheral storage, such as a disk drive.
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Why do we need ADT?

 A data structure is the physical implementation of 
an ADT.
 Each operation associated with the ADT is 

implemented by one or more subroutines in the 
implementation.

 Why do we need ADT?
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Metaphors

 An ADT manages complexity through abstraction
 Hierarchies of labels

 E.g., file => file manager => database

 In a program, implement an ADT, then think only 
about the ADT, not its implementation.

 You should learn how to think with ADT
 “one sentence exercise”
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Logical vs. Physical Form

 Data items have both a logical and a physical
form.

 Logical form: definition of the data item within an 
ADT.
 E.g., Integers in mathematical sense: +, -

 Physical form: implementation of the data item 
within a data structure.
 E.g., 16/32 bit integers, overflow.
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Data Type

ADT:
Type
Operations

Data Items:  
Logical Form

Data Items:
Physical Form

Data Structure:
Storage Space
Subroutines
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Example

 A typical database-style project will have many 
interacting parts.
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Problem, Algorithm,  and Program (1)

 Problem: task to be performed
 Requires input and output
 E.g., given large collection of web documents, find all 

documents containing “Korea”
 Not include how the problem is to be solved
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Problem, Algorithm,  and Program (2)

 Algorithm: method or process to solve a problem
 A problem may be solved with more than one 

algorithm
 Property

 Algorithm must be correct
 Algorithm is composed of a series of concrete steps
 Algorithm has no ambiguity as to which step will be 

performed next
 Algorithm must contain a finite number of steps
 Algorithm must terminate
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Problem, Algorithm,  and Program (3)

 Program: instance, or concrete representation of 
an algorithm in some programming language
 E.g. java implementation of a hash table
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Questions?
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