
U Kang (2016) 1

Data Structure

Lecture#2: Data Structures and Algorithms

U Kang
Seoul National University

U Kang (2016) 2

In This Lecture
 Learn what to consider in selecting right data

structures
 Understand the need for ADT, and its difference

from Data Structure
 Distinguish problem, algorithm, and program

U Kang (2016) 3

Goals of this Course

1. Reinforce the concept that costs and benefits
exist for every data structure.

2. Learn the commonly used data structures.
 These form a programmer's basic data structure

“toolkit.”

3. Understand how to measure the cost of a data
structure or program.
 These techniques also allow you to judge the merits

of new data structures that you or others might invent.

U Kang (2016) 4

The Need for Data Structures

 Data structures organize data
⇒ more efficient programs.

 More powerful computers
⇒ more complex applications.

 More complex applications demand more
calculations.

 Complex computing tasks are unlike our everyday
experience.

U Kang (2016) 5

Efficiency

 Choice of data structure or algorithm can make
the difference between a program running in a
few seconds or many days.

 A solution is said to be efficient if it solves the
problem within its resource constraints.
 Space
 Time

 The cost of a solution is the amount of resources
that the solution consumes.

U Kang (2016) 6

Selecting a Data Structure

Select a data structure as follows:
1. Analyze the problem to determine the basic

operations that must be supported.
2. Quantify the resource constraints for each

operation.
3. Select the data structure that best meets these

requirements.

U Kang (2016) 7

Costs and Benefits

 Each data structure has costs and benefits.
 Rarely is one data structure better than another in

all situations.
 Any data structure requires:
 space for each data item it stores,
 time to perform each basic operation,
 programming effort.

U Kang (2016) 8

Costs and Benefits (cont)

 Each problem has constraints on available space
and time.

 Only after a careful analysis of problem
characteristics can we know the best data
structure for a task.

 Bank example:
 Start account: a few minutes
 Transactions: a few seconds
 Close account: overnight

U Kang (2016) 9

Some Questions to Ask

 Are all data inserted into the data structure at the
beginning, or are insertions interspersed with
other operations? (examples?)

 Can data be deleted?
 Are all data processed in some well-defined order,

or is random access desired?
 E.g., Update all human names from “Firstname

Lastname” format to “Lastname, Firstname” format in
a document collection

 E.g., look up previous fellowship information of a
student L

U Kang (2016) 10

Selecting Data Structure

 Students’ previous GPA scores are located in the
school’s database

 Task 1) Find all students whose GPA is B0 at Spring
2016
 This is called “exact query”. Hash table is appropriate.

 Task 2) Find all students whose GPA is between 0.0
~ 2.0
 This is called “range query”. B-tree is appropriate.

U Kang (2016) 11

Abstract Data Types

 Abstract Data Type (ADT): a definition for a
data type solely in terms of a set of values and a
set of operations on that data type.

 Each ADT operation is defined by its inputs and
outputs.

 Encapsulation: Hide implementation details.

U Kang (2016) 12

Data Structure

 A data structure is the physical implementation of
an ADT.
 Each operation associated with the ADT is

implemented by one or more subroutines in the
implementation.

 Data structure usually refers to an organization
for data in main memory.

 File structure: an organization for data on
peripheral storage, such as a disk drive.

U Kang (2016) 13

Why do we need ADT?

 A data structure is the physical implementation of
an ADT.
 Each operation associated with the ADT is

implemented by one or more subroutines in the
implementation.

 Why do we need ADT?

U Kang (2016) 14

Metaphors

 An ADT manages complexity through abstraction
 Hierarchies of labels

 E.g., file => file manager => database

 In a program, implement an ADT, then think only
about the ADT, not its implementation.

 You should learn how to think with ADT
 “one sentence exercise”

U Kang (2016) 15

Logical vs. Physical Form

 Data items have both a logical and a physical
form.

 Logical form: definition of the data item within an
ADT.
 E.g., Integers in mathematical sense: +, -

 Physical form: implementation of the data item
within a data structure.
 E.g., 16/32 bit integers, overflow.

U Kang (2016) 16

Data Type

ADT:
Type
Operations

Data Items:
Logical Form

Data Items:
Physical Form

Data Structure:
Storage Space
Subroutines

U Kang (2016) 17

Example

 A typical database-style project will have many
interacting parts.

U Kang (2016) 18

Problem, Algorithm, and Program (1)

 Problem: task to be performed
 Requires input and output
 E.g., given large collection of web documents, find all

documents containing “Korea”
 Not include how the problem is to be solved

U Kang (2016) 19

Problem, Algorithm, and Program (2)

 Algorithm: method or process to solve a problem
 A problem may be solved with more than one

algorithm
 Property

 Algorithm must be correct
 Algorithm is composed of a series of concrete steps
 Algorithm has no ambiguity as to which step will be

performed next
 Algorithm must contain a finite number of steps
 Algorithm must terminate

U Kang (2016) 20

Problem, Algorithm, and Program (3)

 Program: instance, or concrete representation of
an algorithm in some programming language
 E.g. java implementation of a hash table

U Kang (2016) 21

Questions?

	슬라이드 번호 1
	In This Lecture
	Goals of this Course
	The Need for Data Structures
	Efficiency
	Selecting a Data Structure
	Costs and Benefits
	Costs and Benefits (cont)
	Some Questions to Ask
	Selecting Data Structure
	Abstract Data Types
	Data Structure
	Why do we need ADT?
	Metaphors
	Logical vs. Physical Form
	슬라이드 번호 16
	Example
	Problem, Algorithm, and Program (1)
	Problem, Algorithm, and Program (2)
	Problem, Algorithm, and Program (3)
	슬라이드 번호 21

