
U Kang (2016) 1

Data Structure

Lecture#12: Binary Trees 3
(Chapter 5)

U Kang
Seoul National University

U Kang (2016) 2

In This Lecture

 Motivation of Priority Queue data structure

 Main ideas and implementations of Heap data
structure

 Analysis of Heap data structure

U Kang (2016) 3

Priority Queues (1)

 Problem: We want a data structure that stores records
as they come (insert), but on request, releases the
record with the greatest value (removemax)

 Example: scheduling jobs in a multi-tasking operating
system.

U Kang (2016) 4

Priority Queues (2)

 Possible Solutions:
 Unsorted array or linked list?

 Sorted array or linked list?

U Kang (2016) 5

Priority Queues (3)

 Possible Solutions:
 Insert appends to an unsorted array or a linked list (

O(1)) and then removemax determines the maximum
by scanning the list (O(n))

 A sorted array or a linked list is used, and is in
increasing order; insert places an element in its correct
position (O(n)) and removemax simply removes the
end of the list (O(1)).

 Use a heap – both insert and removemax are
O(log n) operations

U Kang (2016) 6

Heaps

 Heap: complete binary tree with the heap property:
 Min-heap: All values less than child values.
 Max-heap: All values greater than child values.

 The values are partially ordered (parent-child)
  Binary Search Tree

 Heap representation: normally the array-based
complete binary tree representation.

U Kang (2016) 7

Max Heap Example

88 85 83 72 73 42 57 6 48 60

Pos: 0 1 2 3 4 5 6 7 8 9

U Kang (2016) 8

 Positions of leaf nodes in a max heap with n nodes:
𝑛𝑛
2

~ 𝑛𝑛 − 1

 I.e., a max heap with n nodes contains n − 𝑛𝑛
2

leaf
nodes

Max Heap Property

0

1 2

3 4 5 6

7 8 9

U Kang (2016) 9

Max Heap Implementation (1)
public class MaxHeap<K extends Comparable<? super K>, E> {
private E[] Heap; // Pointer to heap array
private int size; // Maximum size of heap
private int n; // # of things in heap

public MaxHeap(E[] h, int num, int max)
{ Heap = h; n = num; size = max; buildheap(); }

public int heapsize() { return n; }

public boolean isLeaf(int pos) // Is pos a leaf position?
{ return (pos >= n/2) && (pos < n); }

public int leftchild(int pos) { // Leftchild position
assert pos < n/2 : "Position has no left child";
return 2*pos + 1;

}

public int rightchild(int pos) { // Rightchild position
assert pos < (n-1)/2 : "Position has no right child";
return 2*pos + 2;

}
public int parent(int pos) {
assert pos > 0 : "Position has no parent";
return (pos-1)/2;

}

U Kang (2016) 10

Building Heaps

 Binary tree to heap

(4-2), (4-1), (2-1), (5-2), (5-4), (6-3), (6-5), (7-5), (7-6)

(5-2), (7-3), (7-1), (6-1)

U Kang (2016) 11

Building Heaps

 How to build heap? “sift down” method: move
small nodes down the heap

 Both H1 and H2 are heaps. Push R down properly

Sifting down flour

U Kang (2016) 12

Building Heaps

 Siftdown operation

U Kang (2016) 13

Sift Down
public void buildheap() // Heapify contents
{ for (int i=n/2-1; i>=0; i--) siftdown(i); }

private void siftdown(int pos) {
assert (pos >= 0) && (pos < n) :

"Illegal heap position";
while (!isLeaf(pos)) {

int j = leftchild(pos);
if ((j<(n-1)) &&

(Heap[j].compareTo(Heap[j+1]) < 0))
j++; // index of child w/ greater value

if (Heap[pos].compareTo(Heap[j]) >= 0)
return;

DSutil.swap(Heap, pos, j);
pos = j; // Move down

}
}

U Kang (2016) 14

RemoveMax, Insert
public E removemax() {
assert n > 0 : "Removing from empty heap";
DSutil.swap(Heap, 0, --n);
if (n != 0) siftdown(0);
return Heap[n];

}

public void insert(E val) {
assert n < size : "Heap is full";
int curr = n++;
Heap[curr] = val;
// Siftup until curr parent's key > curr key
while ((curr != 0) &&

(Heap[curr].compareTo(Heap[parent(curr)])
> 0)) {

DSutil.swap(Heap, curr, parent(curr));
curr = parent(curr);

}
}

U Kang (2016) 15

Example of RemoveMax
Given the initial heap:

In a heap of n nodes, the maximum
distance the root can sift down
would be floor(log n).

97

79

93

90 81

84

83

5542 2173 83

83

79

93

90 81

84

83

5542 217393

79

83

90 81

84

83

5542 2173

U Kang (2016) 16

 Insert into the heap one value at a time:
 Push each new value down the tree from the root to where it belongs
 ∑𝑖𝑖 log 𝑖𝑖 = 𝜃𝜃(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛)

 Starting with full array, work from bottom up
 Since nodes below form a heap, just need to push current node down (at

worst, go to bottom)
 Most nodes are at the bottom, so not far to go
 When i is the level of the node counting from the bottom starting with 1,

this is ∑𝑖𝑖=1
log 𝑛𝑛 𝑖𝑖 − 1 𝑛𝑛

2𝑖𝑖
= 𝑛𝑛

2
∑𝑖𝑖=1
log 𝑛𝑛 𝑖𝑖−1

2𝑖𝑖−1
= 𝜃𝜃(𝑛𝑛).

Heap Building Analysis

U Kang (2016) 17

Heap with Complete Binary Tree

 Does Heap remains as complete binary tree after
insert and removemax operations?
 Yes!

 Thus, Heap can be implemented with an array

U Kang (2016) 18

What you need to know

 Motivation of Priority Queue data structure; why
list is not appropriate for Priority Queue

 Main ideas and implementations of Heap data
structure
 isLeaf, sift down, insert, remove max, …
 Storage: complete binary tree using array

 Cost of building heap

U Kang (2016) 19

Questions?

	슬라이드 번호 1
	In This Lecture
	Priority Queues (1)
	Priority Queues (2)
	Priority Queues (3)
	Heaps
	Max Heap Example
	Max Heap Property
	Max Heap Implementation (1)
	Building Heaps
	Building Heaps
	Building Heaps
	Sift Down
	RemoveMax, Insert
	Example of RemoveMax
	Heap Building Analysis
	Heap with Complete Binary Tree
	What you need to know
	슬라이드 번호 19

