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In This Lecture

 Motivation of Priority Queue data structure

 Main ideas and implementations of Heap data 
structure

 Analysis of Heap data structure
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Priority Queues (1)

 Problem:  We want a data structure that stores records 
as they come (insert), but on request, releases the 
record with the greatest value (removemax)

 Example: scheduling jobs in a multi-tasking operating 
system.
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Priority Queues (2)

 Possible Solutions:
 Unsorted array or linked list?

 Sorted array or linked list?
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Priority Queues (3)

 Possible Solutions:
 Insert appends to an unsorted array or a linked list ( 

O(1) ) and then removemax determines the maximum 
by scanning the list ( O(n) )

 A sorted array or a linked list is used, and is in 
increasing order; insert places an element in its correct 
position ( O(n) ) and removemax simply removes the 
end of the list ( O(1) ).

 Use a heap – both insert and removemax are
O( log n ) operations
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Heaps

 Heap: complete binary tree with the heap property:
 Min-heap: All values less than child values.
 Max-heap: All values greater than child values.

 The values are partially ordered (parent-child)
  Binary Search Tree

 Heap representation: normally the array-based 
complete binary tree representation.
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Max Heap Example

88  85  83  72  73  42  57  6  48  60

Pos: 0     1     2     3      4     5     6    7    8      9
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 Positions of leaf nodes in a max heap with n nodes: 
𝑛𝑛
2

~ 𝑛𝑛 − 1

 I.e., a max heap with n nodes contains n − 𝑛𝑛
2

leaf 
nodes

Max Heap Property
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1 2

3 4 5 6

7 8 9
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Max Heap Implementation (1)
public class MaxHeap<K extends Comparable<? super K>, E> {
private E[] Heap;    // Pointer to heap array
private int size;    // Maximum size of heap
private int n;       // # of things in heap

public MaxHeap(E[] h, int num, int max)
{ Heap = h;  n = num;  size = max;  buildheap(); }

public int heapsize() { return n; }

public boolean isLeaf(int pos) // Is pos a leaf position?
{ return (pos >= n/2) && (pos < n); }

public int leftchild(int pos) { // Leftchild position
assert pos < n/2 : "Position has no left child";
return 2*pos + 1;

}

public int rightchild(int pos) { // Rightchild position
assert pos < (n-1)/2 : "Position has no right child";
return 2*pos + 2;

}
public int parent(int pos) {
assert pos > 0 : "Position has no parent";
return (pos-1)/2;

}
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Building Heaps

 Binary tree to heap

(4-2), (4-1), (2-1), (5-2), (5-4), (6-3), (6-5), (7-5), (7-6)

(5-2), (7-3), (7-1), (6-1)
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Building Heaps

 How to build heap? “sift down” method: move 
small nodes down the heap

 Both H1 and H2 are heaps. Push R down properly

Sifting down flour
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Building Heaps

 Siftdown operation
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Sift Down
public void buildheap() // Heapify contents
{ for (int i=n/2-1; i>=0; i--) siftdown(i); }

private void siftdown(int pos) {
assert (pos >= 0) && (pos < n) :

"Illegal heap position";
while (!isLeaf(pos)) {

int j = leftchild(pos);
if ((j<(n-1)) &&

(Heap[j].compareTo(Heap[j+1]) < 0))
j++; // index of child w/ greater value

if (Heap[pos].compareTo(Heap[j]) >= 0)
return;

DSutil.swap(Heap, pos, j);
pos = j;  // Move down

}
}
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RemoveMax, Insert
public E removemax() {
assert n > 0 : "Removing from empty heap";
DSutil.swap(Heap, 0, --n);
if (n != 0) siftdown(0);
return Heap[n];

}

public void insert(E val) {
assert n < size : "Heap is full";
int curr = n++;
Heap[curr] = val;
// Siftup until curr parent's key > curr key
while ((curr != 0)  &&

(Heap[curr].compareTo(Heap[parent(curr)])
> 0)) {

DSutil.swap(Heap, curr, parent(curr));
curr = parent(curr);

}
}
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Example of RemoveMax
Given the initial heap:

In a heap of n nodes, the maximum 
distance the root can sift down 
would be floor(log n).
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 Insert into the heap one value at a time: 
 Push each new value down the tree from the root to where it belongs
 ∑𝑖𝑖 log 𝑖𝑖 = 𝜃𝜃(𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛)

 Starting with full array, work from bottom up
 Since nodes below form a heap, just need to push current node down (at 

worst, go to bottom)
 Most nodes are at the bottom, so not far to go
 When i is the level of the node counting from the bottom starting with 1, 

this is ∑𝑖𝑖=1
log 𝑛𝑛 𝑖𝑖 − 1 𝑛𝑛

2𝑖𝑖
= 𝑛𝑛

2
∑𝑖𝑖=1
log 𝑛𝑛 𝑖𝑖−1

2𝑖𝑖−1
= 𝜃𝜃(𝑛𝑛).

Heap Building Analysis
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Heap with Complete Binary Tree

 Does Heap remains as complete binary tree after 
insert and removemax operations?
 Yes!

 Thus, Heap can be implemented with an array
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What you need to know

 Motivation of Priority Queue data structure; why 
list is not appropriate for Priority Queue

 Main ideas and implementations of Heap data 
structure
 isLeaf, sift down, insert, remove max, …
 Storage: complete binary tree using array

 Cost of building heap
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Questions?
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