Data Structure

ecture#15: Non-Binary Trees 2
(Chapter 6)

U Kang
Seoul National University

U Kang (2016)



In This Lecture

= Main ideas in implementations of general trees

= Compare advantages and disadvantages of
Implementations

= Motivation and main ideas of sequential
Implementation

U Kang (2016)



General Tree Implementation

1. List of Children

2. Left-Child/Right-Sibling

3. Dynamic Node

2. Dynamic “Left-Child/Right-Sibling”

Evaluation criteria: how well each implementation supports
e parent();

e |leftmostChild();

* rightSibling();

U Kang (2016) 3



D, &"3‘5\3
“q‘i "_,
@,»-:N;
Y - Tux| Y
\&| mm v

== 1. Lists of Children

Index Val Par

OR/ g g=
(R

1
2
OO .
OO ® |
5

7/

m|M|O[(@[O | >

NN N

0
1
0
1
3
1

U Kang (2016)



1. List of Children

= Advantages

o parent() is efficient
o leftmostChild() is efficient

o Combining two trees is easy If both trees are stored in an
array

= Disadvantages
o rightSibling() is inefficient

o Problem from array-based implementation: needs to know
the number of nodes in advance

U Kang (2016)



DLEND
vL‘ ‘J
Falie%
Y . Y
A TR

~ 2. Leftmost Child/Right Sibling

=)
]
ME

Index Left Val Par Right

0 1[r 1/

@ 1 ™ 3|Aalo]2
2 6|B 0/4

e 3 |l |14
4 D[1]5d%
o e 5 E 1/4

6 L F |2
@G ¢ RS

X 7/

U Kang (2016)



DI
S 9
Falie%
v | I Y
\‘:'41 @ W

~ 2. Leftmost Child/Right Sibling

=)
i
ME

Left Val Par Right

AR [DfE

@ i *3 AlO |2 i

6|B |0 *

o ° i . Cl1 14 i

/D 1|54

® ® | g
,—D—/F 2

GQG o LLLL {Q)R, /

arin

U Kang (2016)



2. Leftmost Child/Right Sibling

= Advantages

o parent(), leftmostChild(), rightSibling() are efficient

o Combining two trees is easy If both trees are stored in an
array

o More space-efficient than “1. List of children” approach

= Disadvantages

o Problem from array-based implementation: needs to know
the number of nodes in advance

U Kang (2016)



3. Dynamic Node — ver 1

Val Size
R |2

(R) NV
o e A3/| B1|

(c) (®) () (F) clo D |0 E o F
(a)

(b)

Link-based implementation of “1. List of children” approach

Each node can have a parent pointer as well (omitted for simplicity)

U Kang (2016)



)

4%

o
E""i"‘

LEm= )

za

O

PSS
Els
)

l =],
Ve
<l

RIES

B N

3. Dynamic Node — ver 1

= Advantages

o parent() is efficient (if parent pointer is stored for each
node)

o leftmostChild() is efficient
o Combining two trees Is easy
o No need to know the number of nodes in advance

= Disadvantages
o rightSibling() is inefficient
o Still, needs to allocate fixed-size array for each node

U Kang (2016) 10



EIND
vﬁi "J
N
Y melm. Y

XN
Y A4

V,
4L

3. Dynamic Node — ver 2

/
(R Aly

O |-

/]

/]

O®6E ©
(@)

()

i

= Each node now requires a fixed amount of space (assuming space

for data = space for pointer)

U Kang (2016)

11



3. Dynamic Node — ver 2

s Compared to ver 1,

o Ver 2 is more flexible: adding or removing an element is
easy

o On the other hand, ver 2 requires more space than ver 1

U Kang (2016)

12



@ c B

D F

olC .

OO®O6E ¢ E|
(a)

(b)

Link-based implementation of
“2. Leftmost-Child/Right-Sibling” approach

Each node can have a parent pointer as well (omitted for simplicity)
U Kang (2016) 13



x Dynamic Left-Child/Right-Sibling approach vs. array
based “2. Leftmost-Child/Right-Sibling” approach

o Dynamic Left-Child/Right-Sibling is better: no need to pre-
allocate memory

= Dynamic Left-Child/Right-Sibling approach vs. “3.
Dynamic Node” approach

o Dynamic Left-Child/Right-Sibling is better for space: uses
less space

U Kang (2016) 14



Sequential Implementations (1)

= In some cases, we want to focus only on space

o Goal Is to minimize space, without considering the time for
parent(), leftmostChild(), rightSibling()

o Application ?
m archiving tree to backup disk (bank)

= Sequential tree implementation aims to minimize
space to store the tree

o List node values in the order they would be visited by a
preorder traversal

o No pointers are stored
0 Saves space, but allows only sequential access
o Need to retain tree structure for reconstruction

U Kang (2016)

15



Sequential Implementations (2)

For binary trees

Idea 1) use a symbol to mark null links
o AB/D/ICEG//IIFHINI

a /:null link

o What is the amount of space overhead?

How can we further improve idea 1, especially ﬁ
for full binary tree? (D / v

Idea 2) use a bit to indicate internal nodes.
o A’B’/DC’E’G/F’HI

*. internal node. / : null link
o No / for full binary tree

o For full binary tree, space overhead? (assume each
node requires 4 bytes which include the bit)

U Kang (2016) 16



V4
Y

dy
Y%

&S
(£ o
£ <
== 20
s

el

‘0}" 14
X

Sequential Implementations (3)

m For general trees, mark the end of each subtree
with )

(R)
(A) (&)

Can we use the same technique to store binary trees? Why or why not?

RAC)D)E))BF)))

U Kang (2016) 17



DUEIND
L
\VV,, 8| veRiTrux [N
R LS mek 4
I E

Sequential Implementations (4)

m EXxercise: reconstruct a general tree from the
sequential representation XAD)E))B)CG)H)))

U Kang (2016)



Summary

= Main ideas in implementations of general trees
o Evaluation criteria

= Compare advantages and disadvantages of
Implementations

o Operations, running time, and space

= Motivation and main ideas of sequential
Implementation

o Reconstruct trees from sequential representations

U Kang (2016)

19



Questions?

U Kang (2016)

20



	슬라이드 번호 1
	In This Lecture
	General Tree Implementation
	1. Lists of Children
	1. List of Children
	2. Leftmost Child/Right Sibling
	2. Leftmost Child/Right Sibling
	2. Leftmost Child/Right Sibling
	3. Dynamic Node – ver 1
	3. Dynamic Node – ver 1
	3. Dynamic Node – ver 2
	3. Dynamic Node – ver 2
	4. Dynamic Left-Child/Right-Sibling
	4. Dynamic Left-Child/Right-Sibling
	Sequential Implementations (1)
	Sequential Implementations (2)
	Sequential Implementations (3)
	Sequential Implementations (4)
	Summary
	슬라이드 번호 20

