
U Kang (2016) 1

Data Structure

Lecture#15: Non-Binary Trees 2
(Chapter 6)

U Kang
Seoul National University

U Kang (2016) 2

In This Lecture

 Main ideas in implementations of general trees

 Compare advantages and disadvantages of
implementations

 Motivation and main ideas of sequential
implementation

U Kang (2016) 3

General Tree Implementation

1. List of Children
2. Left-Child/Right-Sibling
3. Dynamic Node
4. Dynamic “Left-Child/Right-Sibling”

Evaluation criteria: how well each implementation supports
• parent();
• leftmostChild();
• rightSibling();

U Kang (2016) 4

1. Lists of Children

U Kang (2016) 5

1. List of Children

 Advantages
 parent() is efficient
 leftmostChild() is efficient
 Combining two trees is easy if both trees are stored in an

array

 Disadvantages
 rightSibling() is inefficient
 Problem from array-based implementation: needs to know

the number of nodes in advance

U Kang (2016) 6

2. Leftmost Child/Right Sibling

Index

U Kang (2016) 7

2. Leftmost Child/Right Sibling

Index

U Kang (2016) 8

2. Leftmost Child/Right Sibling

 Advantages
 parent(), leftmostChild(), rightSibling() are efficient
 Combining two trees is easy if both trees are stored in an

array
 More space-efficient than “1. List of children” approach

 Disadvantages
 Problem from array-based implementation: needs to know

the number of nodes in advance

U Kang (2016) 9

3. Dynamic Node – ver 1

Link-based implementation of “1. List of children” approach
Each node can have a parent pointer as well (omitted for simplicity)

U Kang (2016) 10

3. Dynamic Node – ver 1

 Advantages
 parent() is efficient (if parent pointer is stored for each

node)
 leftmostChild() is efficient
 Combining two trees is easy
 No need to know the number of nodes in advance

 Disadvantages
 rightSibling() is inefficient
 Still, needs to allocate fixed-size array for each node

U Kang (2016) 11

3. Dynamic Node – ver 2

 Each node now requires a fixed amount of space (assuming space
for data = space for pointer)

U Kang (2016) 12

3. Dynamic Node – ver 2

 Compared to ver 1,
 Ver 2 is more flexible: adding or removing an element is

easy
 On the other hand, ver 2 requires more space than ver 1

U Kang (2016) 13

4. Dynamic Left-Child/Right-Sibling

Link-based implementation of
“2. Leftmost-Child/Right-Sibling” approach

Each node can have a parent pointer as well (omitted for simplicity)

U Kang (2016) 14

 Dynamic Left-Child/Right-Sibling approach vs. array
based “2. Leftmost-Child/Right-Sibling” approach
 Dynamic Left-Child/Right-Sibling is better: no need to pre-

allocate memory

 Dynamic Left-Child/Right-Sibling approach vs. “3.
Dynamic Node” approach
 Dynamic Left-Child/Right-Sibling is better for space: uses

less space

4. Dynamic Left-Child/Right-Sibling

U Kang (2016) 15

Sequential Implementations (1)

 In some cases, we want to focus only on space
 Goal is to minimize space, without considering the time for

parent(), leftmostChild(), rightSibling()
 Application ?

 archiving tree to backup disk (bank)

 Sequential tree implementation aims to minimize
space to store the tree
 List node values in the order they would be visited by a

preorder traversal
 No pointers are stored
 Saves space, but allows only sequential access
 Need to retain tree structure for reconstruction

U Kang (2016) 16

Sequential Implementations (2)

 For binary trees
 Idea 1) use a symbol to mark null links

 AB/D//CEG///FH//I//
 / : null link
 What is the amount of space overhead?

 How can we further improve idea 1, especially
for full binary tree?

 Idea 2) use a bit to indicate internal nodes.
 A’B’/DC’E’G/F’HI
 ’: internal node. / : null link
 No / for full binary tree
 For full binary tree, space overhead? (assume each

node requires 4 bytes which include the bit)

U Kang (2016) 17

 For general trees, mark the end of each subtree
with)

RAC)D)E))BF)))

Sequential Implementations (3)

Can we use the same technique to store binary trees? Why or why not?

U Kang (2016) 18

Sequential Implementations (4)

 Exercise: reconstruct a general tree from the
sequential representation XAD)E))B)CG)H)))

U Kang (2016) 19

Summary

 Main ideas in implementations of general trees
 Evaluation criteria

 Compare advantages and disadvantages of
implementations
 Operations, running time, and space

 Motivation and main ideas of sequential
implementation
 Reconstruct trees from sequential representations

U Kang (2016) 20

Questions?

	슬라이드 번호 1
	In This Lecture
	General Tree Implementation
	1. Lists of Children
	1. List of Children
	2. Leftmost Child/Right Sibling
	2. Leftmost Child/Right Sibling
	2. Leftmost Child/Right Sibling
	3. Dynamic Node – ver 1
	3. Dynamic Node – ver 1
	3. Dynamic Node – ver 2
	3. Dynamic Node – ver 2
	4. Dynamic Left-Child/Right-Sibling
	4. Dynamic Left-Child/Right-Sibling
	Sequential Implementations (1)
	Sequential Implementations (2)
	Sequential Implementations (3)
	Sequential Implementations (4)
	Summary
	슬라이드 번호 20

