
U Kang (2016) 1

Data Structure

Lecture#15: Non-Binary Trees 2
(Chapter 6)

U Kang
Seoul National University

U Kang (2016) 2

In This Lecture

 Main ideas in implementations of general trees

 Compare advantages and disadvantages of
implementations

 Motivation and main ideas of sequential
implementation

U Kang (2016) 3

General Tree Implementation

1. List of Children
2. Left-Child/Right-Sibling
3. Dynamic Node
4. Dynamic “Left-Child/Right-Sibling”

Evaluation criteria: how well each implementation supports
• parent();
• leftmostChild();
• rightSibling();

U Kang (2016) 4

1. Lists of Children

U Kang (2016) 5

1. List of Children

 Advantages
 parent() is efficient
 leftmostChild() is efficient
 Combining two trees is easy if both trees are stored in an

array

 Disadvantages
 rightSibling() is inefficient
 Problem from array-based implementation: needs to know

the number of nodes in advance

U Kang (2016) 6

2. Leftmost Child/Right Sibling

Index

U Kang (2016) 7

2. Leftmost Child/Right Sibling

Index

U Kang (2016) 8

2. Leftmost Child/Right Sibling

 Advantages
 parent(), leftmostChild(), rightSibling() are efficient
 Combining two trees is easy if both trees are stored in an

array
 More space-efficient than “1. List of children” approach

 Disadvantages
 Problem from array-based implementation: needs to know

the number of nodes in advance

U Kang (2016) 9

3. Dynamic Node – ver 1

Link-based implementation of “1. List of children” approach
Each node can have a parent pointer as well (omitted for simplicity)

U Kang (2016) 10

3. Dynamic Node – ver 1

 Advantages
 parent() is efficient (if parent pointer is stored for each

node)
 leftmostChild() is efficient
 Combining two trees is easy
 No need to know the number of nodes in advance

 Disadvantages
 rightSibling() is inefficient
 Still, needs to allocate fixed-size array for each node

U Kang (2016) 11

3. Dynamic Node – ver 2

 Each node now requires a fixed amount of space (assuming space
for data = space for pointer)

U Kang (2016) 12

3. Dynamic Node – ver 2

 Compared to ver 1,
 Ver 2 is more flexible: adding or removing an element is

easy
 On the other hand, ver 2 requires more space than ver 1

U Kang (2016) 13

4. Dynamic Left-Child/Right-Sibling

Link-based implementation of
“2. Leftmost-Child/Right-Sibling” approach

Each node can have a parent pointer as well (omitted for simplicity)

U Kang (2016) 14

 Dynamic Left-Child/Right-Sibling approach vs. array
based “2. Leftmost-Child/Right-Sibling” approach
 Dynamic Left-Child/Right-Sibling is better: no need to pre-

allocate memory

 Dynamic Left-Child/Right-Sibling approach vs. “3.
Dynamic Node” approach
 Dynamic Left-Child/Right-Sibling is better for space: uses

less space

4. Dynamic Left-Child/Right-Sibling

U Kang (2016) 15

Sequential Implementations (1)

 In some cases, we want to focus only on space
 Goal is to minimize space, without considering the time for

parent(), leftmostChild(), rightSibling()
 Application ?

 archiving tree to backup disk (bank)

 Sequential tree implementation aims to minimize
space to store the tree
 List node values in the order they would be visited by a

preorder traversal
 No pointers are stored
 Saves space, but allows only sequential access
 Need to retain tree structure for reconstruction

U Kang (2016) 16

Sequential Implementations (2)

 For binary trees
 Idea 1) use a symbol to mark null links

 AB/D//CEG///FH//I//
 / : null link
 What is the amount of space overhead?

 How can we further improve idea 1, especially
for full binary tree?

 Idea 2) use a bit to indicate internal nodes.
 A’B’/DC’E’G/F’HI
 ’: internal node. / : null link
 No / for full binary tree
 For full binary tree, space overhead? (assume each

node requires 4 bytes which include the bit)

U Kang (2016) 17

 For general trees, mark the end of each subtree
with)

RAC)D)E))BF)))

Sequential Implementations (3)

Can we use the same technique to store binary trees? Why or why not?

U Kang (2016) 18

Sequential Implementations (4)

 Exercise: reconstruct a general tree from the
sequential representation XAD)E))B)CG)H)))

U Kang (2016) 19

Summary

 Main ideas in implementations of general trees
 Evaluation criteria

 Compare advantages and disadvantages of
implementations
 Operations, running time, and space

 Motivation and main ideas of sequential
implementation
 Reconstruct trees from sequential representations

U Kang (2016) 20

Questions?

	슬라이드 번호 1
	In This Lecture
	General Tree Implementation
	1. Lists of Children
	1. List of Children
	2. Leftmost Child/Right Sibling
	2. Leftmost Child/Right Sibling
	2. Leftmost Child/Right Sibling
	3. Dynamic Node – ver 1
	3. Dynamic Node – ver 1
	3. Dynamic Node – ver 2
	3. Dynamic Node – ver 2
	4. Dynamic Left-Child/Right-Sibling
	4. Dynamic Left-Child/Right-Sibling
	Sequential Implementations (1)
	Sequential Implementations (2)
	Sequential Implementations (3)
	Sequential Implementations (4)
	Summary
	슬라이드 번호 20

