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In This Lecture

= Main ideas in implementations of general trees

= Compare advantages and disadvantages of
Implementations

= Motivation and main ideas of sequential
Implementation
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General Tree Implementation

1. List of Children

2. Left-Child/Right-Sibling

3. Dynamic Node

2. Dynamic “Left-Child/Right-Sibling”

Evaluation criteria: how well each implementation supports
e parent();

e |leftmostChild();

* rightSibling();
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1. List of Children

= Advantages

o parent() is efficient
o leftmostChild() is efficient

o Combining two trees is easy If both trees are stored in an
array

= Disadvantages
o rightSibling() is inefficient

o Problem from array-based implementation: needs to know
the number of nodes in advance
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2. Leftmost Child/Right Sibling

= Advantages

o parent(), leftmostChild(), rightSibling() are efficient

o Combining two trees is easy If both trees are stored in an
array

o More space-efficient than “1. List of children” approach

= Disadvantages

o Problem from array-based implementation: needs to know
the number of nodes in advance
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3. Dynamic Node — ver 1
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Link-based implementation of “1. List of children” approach

Each node can have a parent pointer as well (omitted for simplicity)
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3. Dynamic Node — ver 1

= Advantages

o parent() is efficient (if parent pointer is stored for each
node)

o leftmostChild() is efficient
o Combining two trees Is easy
o No need to know the number of nodes in advance

= Disadvantages
o rightSibling() is inefficient
o Still, needs to allocate fixed-size array for each node

U Kang (2016) 10
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3. Dynamic Node — ver 2
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= Each node now requires a fixed amount of space (assuming space

for data = space for pointer)
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3. Dynamic Node — ver 2

s Compared to ver 1,

o Ver 2 is more flexible: adding or removing an element is
easy

o On the other hand, ver 2 requires more space than ver 1

U Kang (2016)
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Link-based implementation of
“2. Leftmost-Child/Right-Sibling” approach

Each node can have a parent pointer as well (omitted for simplicity)
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x Dynamic Left-Child/Right-Sibling approach vs. array
based “2. Leftmost-Child/Right-Sibling” approach

o Dynamic Left-Child/Right-Sibling is better: no need to pre-
allocate memory

= Dynamic Left-Child/Right-Sibling approach vs. “3.
Dynamic Node” approach

o Dynamic Left-Child/Right-Sibling is better for space: uses
less space

U Kang (2016) 14



Sequential Implementations (1)

= In some cases, we want to focus only on space

o Goal Is to minimize space, without considering the time for
parent(), leftmostChild(), rightSibling()

o Application ?
m archiving tree to backup disk (bank)

= Sequential tree implementation aims to minimize
space to store the tree

o List node values in the order they would be visited by a
preorder traversal

o No pointers are stored
0 Saves space, but allows only sequential access
o Need to retain tree structure for reconstruction

U Kang (2016)
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Sequential Implementations (2)

For binary trees

Idea 1) use a symbol to mark null links
o AB/D/ICEG//IIFHINI

a /:null link

o What is the amount of space overhead?

How can we further improve idea 1, especially ﬁ
for full binary tree? (D / v

Idea 2) use a bit to indicate internal nodes.
o A’B’/DC’E’G/F’HI

*. internal node. / : null link
o No / for full binary tree

o For full binary tree, space overhead? (assume each
node requires 4 bytes which include the bit)

U Kang (2016) 16
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Sequential Implementations (3)

m For general trees, mark the end of each subtree
with )

(R)
(A) (&)

Can we use the same technique to store binary trees? Why or why not?

RAC)D)E))BF)))
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Sequential Implementations (4)

m EXxercise: reconstruct a general tree from the
sequential representation XAD)E))B)CG)H)))
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Summary

= Main ideas in implementations of general trees
o Evaluation criteria

= Compare advantages and disadvantages of
Implementations

o Operations, running time, and space

= Motivation and main ideas of sequential
Implementation

o Reconstruct trees from sequential representations

U Kang (2016)
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Questions?
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