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In This Lecture

 Motivation of searching

 Main idea and cost of jump search, interpolation 
search, and quadratic binary search

 Using lists ordered by frequency for searching
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 If elements are not sorted, than linear search is the 
best we can do.

 Assume that the elements are in the ascending order.

 Is linear search still optimal?  Why not?

Searching Ordered Arrays (1)
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 Binary search is better than linear search for 
searching an ordered array
 Best method if we have no information on the array

 But we will find a method better than binary search 
when we have additional knowledges including data 
distribution and usage patterns

Searching Ordered Arrays (2)
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 Idea 1: use linear search, but test if the element is 
greater than K (= the key we are looking for).  

 Observation: If we look at L[5] and find that K is 
bigger, then we rule out L[1] to L[4] as well.

 More is Better: If K > L[n], then we know in one test 
that K is not in L. 
 What is wrong here?

Searching Ordered Arrays (3)
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Jump Search

 Jump Search
 Check every k'th element (L[k], L[2k], ...).
 If K is greater, then go on.
 If K is less, then use linear search on the k elements.

 What is the right amount to jump?
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Analysis of Jump Search

 If (m-1)k < n ≤ mk, then the total cost is at most        
m + k – 1   3-way comparisons.

 Cost 𝑇𝑇 𝑛𝑛, 𝑘𝑘 = 𝑚𝑚 + 𝑘𝑘 − 1 = 𝑛𝑛
𝑘𝑘

+ 𝑘𝑘 − 1

 What is the best k to choose?

𝑚𝑚𝑚𝑚𝑚𝑚1≤𝑘𝑘≤𝑛𝑛
𝑛𝑛
𝑘𝑘

+ 𝑘𝑘 − 1

n: input size
3-way comparison: check ≤, =, and ≥
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Jump Search Analysis (cont)

 When is 𝑇𝑇 𝑛𝑛, 𝑘𝑘 = 𝑛𝑛
𝑘𝑘

+ 𝑘𝑘 − 1 minimized?

 Take the derivative and solve for T'(k) = 0 to find 
the minimum.
 The minimum is found when 𝑘𝑘 = 𝑛𝑛
 In that case, 𝑇𝑇 𝑛𝑛, 𝑘𝑘 ≈ 2 𝑛𝑛
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Interpolation Search

 (Also known as Dictionary Search)

 Given a sorted array, can we search an item K faster 
than the binary search?
 Yes!
 Search L at a position p that is proportional to the value K.

𝑝𝑝 =
𝐾𝐾 − 𝐿𝐿[1]
𝐿𝐿 𝑛𝑛 − 𝐿𝐿[1]

 E.g., if we search for the word ‘yearning’ in a dictionary, 
we would prefer to start search from near the end, not from 
the middle

 Repeat as necessary to recalculate p for future searches.
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Quadratic Binary Search (QBS)

 A variation on dictionary search

 Compute p and examine 𝐿𝐿[ 𝑝𝑝𝑝𝑝 ]

 If  K = 𝐿𝐿 𝑝𝑝𝑝𝑝 , the search is complete.
 If  K < 𝐿𝐿[ 𝑝𝑝𝑝𝑝 ] then do a jump search: sequentially 

probe  𝐿𝐿[ 𝑝𝑝𝑝𝑝 − 𝑖𝑖 𝑛𝑛 ],  i = 1, 2, 3, …
until we reach a value less than or equal to K.

 Similarly for K > 𝐿𝐿[ 𝑝𝑝𝑝𝑝 ]
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Quadratic Binary Search (cont)
 We are now within  𝑛𝑛 positions of K.

 ASSUME (for now) that the jump search takes a 
constant number of comparisons.

 We have a sublist of size  𝑛𝑛.

 Repeat the process recursively.

 What is the cost?
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QBS Cost

 QBS cost is Θ(log log n) if the number of probes on 
jump search is constant.
 (Proof)

 The probe gap : 𝑛𝑛 ⇒ 𝑛𝑛 ⇒ 𝑛𝑛 ….

 In other words, 𝑛𝑛1/2 ⇒ 𝑛𝑛1/4 ⇒ 𝑛𝑛1/8 …
 Since n = 2log 𝑛𝑛, the probe gap: 2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙/2 ⇒ 2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙/4 … ⇒ 21

 That means we need Θ (log log n) steps, and jump search in 
each step takes constant time
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QBS Probe Count

 We can show that on uniformly distributed data, the 
average number of probes required is at most 2.4 
(constant).
 Proof: appendix

 Is this better than binary search? 
 Theoretically, yes (in the average case for the uniformly 

distributed data).
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Comparison

n log n log log n Diff
16 4 2 2
256 8 3 2.7
64k 16 4 4
232 32 5 6.4

n log n 2.4 log log n Diff
16 3 4.8 worse
256 7 7.2 same
64k 15 9.6 1.6
232 31 12 2.6

Diff = (𝟏𝟏)
(𝟐𝟐)

(1) (2)
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Summary (Until This Point)

 Searching ordered list
 Jump search: 2 𝑛𝑛
 Binary search: log n
 QBS: log log n

 Can we search an item faster than the above 
methods, if items are arranged in a special 
way?
 Yes. Main idea: people search only ‘frequent’ 

items in most cases (details follow)



U Kang (2016) 16

Lists Ordered by Frequency

 Order lists by (expected) frequency of 
occurrence.
 Perform sequential search

 Cost to access first record: 1
 Cost to access second record: 2
 …

 Expected search cost:
Pi: relative frequency 

of i th record
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Examples (1)

(1) All records have equal frequency.
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Examples (2)

(2) Geometric Frequency
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Zipf Distributions

 Zipf distribution: P(x) ∝ x-1

 Distribution for frequency of word usage in natural 
languages.

 Distribution for populations of cities, etc.

𝐶𝐶𝑛𝑛 = �
𝑖𝑖=1

𝑛𝑛
𝑖𝑖
𝑖𝑖𝐻𝐻𝑛𝑛

=
𝑛𝑛
𝐻𝐻𝑛𝑛

≈
𝑛𝑛

log𝑒𝑒 𝑛𝑛
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Zipf Distributions

 80/20 rule:
 80% of accesses are to 20% of the records.
 For distributions following 80/20 rule,
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What you need to know

 Searching: very important task with many usages

 Main idea of jump search, interpolation search, 
quadratic binary search
 QBS: better than binary search when we have 

knowledges about data distribution

 Main idea of using lists ordered by frequency
 Better than binary search/QBS in skewed usage 

patterns
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Questions?



U Kang (2016) 23

Appendix
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QBS Probe Proof (1)

 On uniformly distributed data, the average number of 
probes in a step of QBS is at most 2.4.
 (Proof)
 Let Pj = probability of needing exactly j probes
 Since we need to do at least 2 probes, the average number of 

probes in a step of QBS is given by
 2 + ∑𝑗𝑗=3

𝑛𝑛 (𝑗𝑗 − 2) 𝑃𝑃(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑗𝑗 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)
 = 2 + [1𝑃𝑃3 + 2𝑃𝑃4 + ⋯+ 𝑛𝑛 − 2 𝑃𝑃 𝑛𝑛]
 = 2 + 1 − 𝑃𝑃1 − 𝑃𝑃2 + 1 − 𝑃𝑃1 − 𝑃𝑃2 − 𝑃𝑃3 … + 𝑃𝑃 𝑛𝑛

 = 2 + ∑𝑗𝑗=3
𝑛𝑛 𝑃𝑃(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑗𝑗 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)
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QBS Probe Proof (2)

 (Proof cont.)
 Let Qj = P(need at least j probes)
 Let X be a random variable denoting the number of items in 

L[1]..L[n] smaller than K.

 The probability that each L[i] is smaller than K is 𝑝𝑝 = 𝐾𝐾−𝐿𝐿[1]
𝐿𝐿 𝑛𝑛 −𝐿𝐿[1]

, 
assuming uniform distribution.

 Since each L[i] is independent, X is a binomial distribution with 
𝜇𝜇 = 𝑝𝑝𝑝𝑝 and 𝜎𝜎2 = 𝑝𝑝 1 − 𝑝𝑝 𝑛𝑛

 𝑄𝑄𝑗𝑗 ≤ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑋𝑋 − 𝜇𝜇 ≥ 𝑗𝑗 − 2 𝑛𝑛 ≤ 𝜎𝜎2

𝑗𝑗−2 𝑛𝑛
2 = 𝑝𝑝(1−𝑝𝑝)

(𝑗𝑗−2)2

Chebyshev inequality:

𝑷𝑷( 𝑿𝑿 − 𝝁𝝁 ≥ 𝒄𝒄) ≤
𝝈𝝈𝟐𝟐

𝒄𝒄𝟐𝟐
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QBS Probe Proof (3)

 (Proof cont.)
 Average number of probes in a step of QBS

 = 2 + ∑𝑗𝑗=3
𝑛𝑛 𝑃𝑃(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑎𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑗𝑗 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)

 = 2 + ∑𝑗𝑗=3
𝑛𝑛 𝑄𝑄𝑗𝑗

 ≤ 2 + ∑𝑗𝑗=3
𝑛𝑛 𝑝𝑝 1−𝑝𝑝

𝑗𝑗−2 2

 ≤ 2 + ∑𝑗𝑗=3
𝑛𝑛 1

4 𝑗𝑗−2 2

 < 2 + 1
4
∑𝑗𝑗=1∞ 1

𝑗𝑗2
= 2 + 1

4
𝜋𝜋2

6
≈ 2.4
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