

Data Structure

Lecture#20: Searching (Chapter 9)

U Kang Seoul National University

U Kang (2016)

1

In This Lecture

- Motivation of searching
- Main idea and cost of jump search, interpolation search, and quadratic binary search
- Using lists ordered by frequency for searching

Searching Ordered Arrays (1)

- If elements are not sorted, than linear search is the best we can do.
- Assume that the elements are in the ascending order.
- Is linear search still optimal? Why not?

Searching Ordered Arrays (2)

- Binary search is better than linear search for searching an ordered array
 - Best method if we have no information on the array
- But we will find a method better than binary search when we have additional knowledges including data distribution and usage patterns

Searching Ordered Arrays (3)

- Idea 1: use linear search, but test if the element is greater than K (= the key we are looking for).
- Observation: If we look at L[5] and find that K is bigger, then we rule out L[1] to L[4] as well.
- More is Better: If K > L[n], then we know in one test that K is not in L.
 - What is wrong here?

Jump Search

Jump Search

- Check every k'th element ($\mathbf{L}[k]$, $\mathbf{L}[2k]$, ...).
- If K is greater, then go on.
- If K is less, then use linear search on the k elements.
- What is the right amount to jump?

Analysis of Jump Search

n: input size 3-way comparison: check \leq , =, and \geq

• If $(m-1)k < n \le mk$, then the total cost is at most m+k-1 3-way comparisons.

• Cost
$$T(n,k) = m + k - 1 = \left[\frac{n}{k}\right] + k - 1$$

• What is the best *k* to choose?

$$\min_{1 \le k \le n} \left[\frac{n}{k} \right] + k - 1$$

Jump Search Analysis (cont)

• When is
$$T(n,k) = \left[\frac{n}{k}\right] + k - 1$$
 minimized?

- Take the derivative and solve for T'(k) = 0 to find the minimum.
 - The minimum is found when $k = \sqrt{n}$
 - In that case, $T(n,k) \approx 2\sqrt{n}$

Interpolation Search

(Also known as Dictionary Search)

- Given a sorted array, can we search an item *K* faster than the binary search?
 - Yes!
 - Search L at a position *p* that is proportional to the value *K*. $p = \frac{K - L[1]}{L[n] - L[1]}$
 - E.g., if we search for the word 'yearning' in a dictionary, we would prefer to start search from near the end, not from the middle
 - \Box Repeat as necessary to recalculate *p* for future searches.

- A variation on dictionary search
- Compute *p* and examine *L*[[*pn*]]
- If K = L[[pn]], the search is complete.
- If K < L[[pn]] then do a jump search: sequentially probe $L[[pn i\sqrt{n}]]$, i = 1, 2, 3, ...

until we reach a value less than or equal to K.

• Similarly for K > L[[pn]]

Quadratic Binary Search (cont)

- We are now within \sqrt{n} positions of *K*.
- ASSUME (for now) that the jump search takes a constant number of comparisons.
- We have a sublist of size \sqrt{n} .
- Repeat the process recursively.
- What is the cost?

- QBS cost is O(log log n) if the number of probes on jump search is constant.
 (Proof)
 - The probe gap : $\sqrt{n} \Rightarrow \sqrt{\sqrt{n}} \Rightarrow \sqrt{\sqrt{n}} \dots$
 - In other words, $n^{1/2} \Rightarrow n^{1/4} \Rightarrow n^{1/8} \dots$
 - Since $n = 2^{\log n}$, the probe gap: $2^{\log n/2} \Rightarrow 2^{\log n/4} \dots \Rightarrow 2^1$
 - That means we need Θ (log log n) steps, and jump search in each step takes constant time

QBS Probe Count

- We can show that on uniformly distributed data, the average number of probes required is at most 2.4 (constant).
 - □ Proof: appendix
- Is this better than binary search?
 - Theoretically, yes (in the average case for the uniformly distributed data).

Comparison

	(1)	(2)	
n	log n	log log n	Diff
16	4	2	2
256	8	3	2.7
64k	16	4	4
2 ³²	32	5	6.4

n	log n	2.4 log log n	Diff
16	3	4.8	worse
256	7	7.2	same
64k	15	9.6	1.6
2 ³²	31	12	2.6

 $\mathbf{Diff} = \frac{(1)}{(2)}$

Summary (Until This Point)

- Searching ordered list
 - □ Jump search: $2\sqrt{n}$
 - Binary search: log n
 - QBS: log log n
- Can we search an item faster than the above methods, if items are arranged in a special way?
 - Yes. Main idea: people search only 'frequent' items in most cases (details follow)

...

Lists Ordered by Frequency

- Order lists by (expected) frequency of occurrence.
 - Perform sequential search

Expected search cost:

- Cost to access first record: 1
 Cost to access second record: 2
 - **P**_i: relative frequency of i th record

$$\overline{C}_n = 1p_1 + 2p_2 + \dots + np_n$$

U Kang (2016)

Examples (1)

(1) All records have equal frequency.

$$\overline{C}_n = \sum_{i=1}^n i / n = (n+1) / 2$$

Examples (2)

(2) Geometric Frequency

$$p_i = \begin{cases} 1/2^i & \text{if } 1 \le i \le n-1 \\ 1/2^{n-1} & \text{if } i = n \end{cases}$$

$$\overline{C}_n \approx \sum_{i=1}^n (i/2^i) \approx 2$$

Zipf Distributions

- Zipf distribution: $P(x) \propto x^{-1}$
 - Distribution for frequency of word usage in natural languages.
 - Distribution for populations of cities, etc.

U Kang (2016)

Zipf Distributions

■ 80/20 rule:

□ 80% of accesses are to 20% of the records.

□ For distributions following 80/20 rule,

 $\overline{C}_n \approx 0.122n$

What you need to know

- Searching: very important task with many usages
- Main idea of jump search, interpolation search, quadratic binary search
 - QBS: better than binary search when we have knowledges about data distribution
- Main idea of using lists ordered by frequency
 - Better than binary search/QBS in skewed usage patterns

Questions?

Appendix

QBS Probe Proof (1)

- On uniformly distributed data, the average number of probes in a step of QBS is at most 2.4.
 - (Proof)
 - Let P_j = probability of needing exactly j probes
 - Since we need to do at least 2 probes, the average number of probes in a step of QBS is given by
 - $2 + \sum_{j=3}^{\sqrt{n}} (j-2) P(need exactly j probes)$
 - = 2 + $[1P_3 + 2P_4 + \dots + (\sqrt{n} 2)P_{\sqrt{n}}]$
 - = 2 + (1 P₁ P₂) + (1 P₁ P₂ P₃) ... + P_{\sqrt{n}}
 - = 2 + $\sum_{j=3}^{\sqrt{n}} P(need \ at \ least \ j \ probes)$

Details

QBS Probe Proof (2)

(Proof cont.)

- Let $Q_j = P(\text{need } at \ least \ j \ probes)$
- □ Let X be a random variable denoting the number of items in L[1]..L[n] smaller than *K*.
- The probability that each L[i] is smaller than K is $p = \frac{K L[1]}{L[n] L[1]}$, assuming uniform distribution.
- □ Since each L[i] is independent, X is a binomial distribution with $\mu = pn$ and $\sigma^2 = p(1-p)n$

•
$$Q_j \le Prob(|X - \mu| \ge (j - 2)\sqrt{n}) \le \frac{\sigma^2}{\left((j - 2)\sqrt{n}\right)^2} = \frac{p(1 - p)}{(j - 2)^2}$$

Chebyshev inequality:

$$P(|X-\mu| \ge c) \le \frac{\sigma^2}{c^2}$$

U Kang (2016)

QBS Probe Proof (3)

(Proof cont.)

• Average number of probes in a step of QBS $\square = 2 + \sum_{i=3}^{\sqrt{n}} P(need \ at \ least \ j \ probes)$ $\Box = 2 + \sum_{i=3}^{\sqrt{n}} Q_i$ $\square \leq 2 + \sum_{j=3}^{\sqrt{n}} \frac{p(1-p)}{(j-2)^2}$ $\square \leq 2 + \sum_{j=3}^{\sqrt{n}} \frac{1}{4(j-2)^2}$ $\square < 2 + \frac{1}{4} \sum_{j=1}^{\infty} \frac{1}{i^2} = 2 + \frac{1}{4} \frac{\pi^2}{6} \approx 2.4$