
U Kang (2016) 1

Data Structure

Lecture#20: Searching
(Chapter 9)

U Kang
Seoul National University

U Kang (2016) 2

In This Lecture

 Motivation of searching

 Main idea and cost of jump search, interpolation
search, and quadratic binary search

 Using lists ordered by frequency for searching

U Kang (2016) 3

 If elements are not sorted, than linear search is the
best we can do.

 Assume that the elements are in the ascending order.

 Is linear search still optimal? Why not?

Searching Ordered Arrays (1)

U Kang (2016) 4

 Binary search is better than linear search for
searching an ordered array
 Best method if we have no information on the array

 But we will find a method better than binary search
when we have additional knowledges including data
distribution and usage patterns

Searching Ordered Arrays (2)

U Kang (2016) 5

 Idea 1: use linear search, but test if the element is
greater than K (= the key we are looking for).

 Observation: If we look at L[5] and find that K is
bigger, then we rule out L[1] to L[4] as well.

 More is Better: If K > L[n], then we know in one test
that K is not in L.
 What is wrong here?

Searching Ordered Arrays (3)

U Kang (2016) 6

Jump Search

 Jump Search
 Check every k'th element (L[k], L[2k], ...).
 If K is greater, then go on.
 If K is less, then use linear search on the k elements.

 What is the right amount to jump?

U Kang (2016) 7

Analysis of Jump Search

 If (m-1)k < n ≤ mk, then the total cost is at most
m + k – 1 3-way comparisons.

 Cost 𝑇𝑇 𝑛𝑛, 𝑘𝑘 = 𝑚𝑚 + 𝑘𝑘 − 1 = 𝑛𝑛
𝑘𝑘

+ 𝑘𝑘 − 1

 What is the best k to choose?

𝑚𝑚𝑚𝑚𝑛𝑛1≤𝑘𝑘≤𝑛𝑛
𝑛𝑛
𝑘𝑘

+ 𝑘𝑘 − 1

n: input size
3-way comparison: check ≤, =, and ≥

U Kang (2016) 8

Jump Search Analysis (cont)

 When is 𝑇𝑇 𝑛𝑛, 𝑘𝑘 = 𝑛𝑛
𝑘𝑘

+ 𝑘𝑘 − 1 minimized?

 Take the derivative and solve for T'(k) = 0 to find
the minimum.
 The minimum is found when 𝑘𝑘 = 𝑛𝑛
 In that case, 𝑇𝑇 𝑛𝑛, 𝑘𝑘 ≈ 2 𝑛𝑛

U Kang (2016) 9

Interpolation Search

 (Also known as Dictionary Search)

 Given a sorted array, can we search an item K faster
than the binary search?
 Yes!
 Search L at a position p that is proportional to the value K.

𝑝𝑝 =
𝐾𝐾 − 𝐿𝐿[1]
𝐿𝐿 𝑛𝑛 − 𝐿𝐿[1]

 E.g., if we search for the word ‘yearning’ in a dictionary,
we would prefer to start search from near the end, not from
the middle

 Repeat as necessary to recalculate p for future searches.

U Kang (2016) 10

Quadratic Binary Search (QBS)

 A variation on dictionary search

 Compute p and examine 𝐿𝐿[𝑝𝑝𝑛𝑛]

 If K = 𝐿𝐿 𝑝𝑝𝑛𝑛 , the search is complete.
 If K < 𝐿𝐿[𝑝𝑝𝑛𝑛] then do a jump search: sequentially

probe 𝐿𝐿[𝑝𝑝𝑛𝑛 − 𝑚𝑚 𝑛𝑛], i = 1, 2, 3, …
until we reach a value less than or equal to K.

 Similarly for K > 𝐿𝐿[𝑝𝑝𝑛𝑛]

U Kang (2016) 11

Quadratic Binary Search (cont)
 We are now within 𝑛𝑛 positions of K.

 ASSUME (for now) that the jump search takes a
constant number of comparisons.

 We have a sublist of size 𝑛𝑛.

 Repeat the process recursively.

 What is the cost?

U Kang (2016) 12

QBS Cost

 QBS cost is Θ(log log n) if the number of probes on
jump search is constant.
 (Proof)

 The probe gap : 𝑛𝑛 ⇒ 𝑛𝑛 ⇒ 𝑛𝑛 ….

 In other words, 𝑛𝑛1/2 ⇒ 𝑛𝑛1/4 ⇒ 𝑛𝑛1/8 …
 Since n = 2log 𝑛𝑛, the probe gap: 2𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛/2 ⇒ 2𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛/4 … ⇒ 21

 That means we need Θ (log log n) steps, and jump search in
each step takes constant time

U Kang (2016) 13

QBS Probe Count

 We can show that on uniformly distributed data, the
average number of probes required is at most 2.4
(constant).
 Proof: appendix

 Is this better than binary search?
 Theoretically, yes (in the average case for the uniformly

distributed data).

U Kang (2016) 14

Comparison

n log n log log n Diff
16 4 2 2
256 8 3 2.7
64k 16 4 4
232 32 5 6.4

n log n 2.4 log log n Diff
16 3 4.8 worse
256 7 7.2 same
64k 15 9.6 1.6
232 31 12 2.6

Diff = (𝟏𝟏)
(𝟐𝟐)

(1) (2)

U Kang (2016) 15

Summary (Until This Point)

 Searching ordered list
 Jump search: 2 𝑛𝑛
 Binary search: log n
 QBS: log log n

 Can we search an item faster than the above
methods, if items are arranged in a special
way?
 Yes. Main idea: people search only ‘frequent’

items in most cases (details follow)

U Kang (2016) 16

Lists Ordered by Frequency

 Order lists by (expected) frequency of
occurrence.
 Perform sequential search

 Cost to access first record: 1
 Cost to access second record: 2
 …

 Expected search cost:
Pi: relative frequency

of i th record

U Kang (2016) 17

Examples (1)

(1) All records have equal frequency.

U Kang (2016) 18

Examples (2)

(2) Geometric Frequency

U Kang (2016) 19

Zipf Distributions

 Zipf distribution: P(x) ∝ x-1

 Distribution for frequency of word usage in natural
languages.

 Distribution for populations of cities, etc.

𝐶𝐶𝑛𝑛 = �
𝑖𝑖=1

𝑛𝑛
𝑚𝑚
𝑚𝑚𝐻𝐻𝑛𝑛

=
𝑛𝑛
𝐻𝐻𝑛𝑛

≈
𝑛𝑛

log𝑒𝑒 𝑛𝑛

U Kang (2016) 20

Zipf Distributions

 80/20 rule:
 80% of accesses are to 20% of the records.
 For distributions following 80/20 rule,

U Kang (2016) 21

What you need to know

 Searching: very important task with many usages

 Main idea of jump search, interpolation search,
quadratic binary search
 QBS: better than binary search when we have

knowledges about data distribution

 Main idea of using lists ordered by frequency
 Better than binary search/QBS in skewed usage

patterns

U Kang (2016) 22

Questions?

U Kang (2016) 23

Appendix

U Kang (2016) 24

QBS Probe Proof (1)

 On uniformly distributed data, the average number of
probes in a step of QBS is at most 2.4.
 (Proof)
 Let Pj = probability of needing exactly j probes
 Since we need to do at least 2 probes, the average number of

probes in a step of QBS is given by
 2 + ∑𝑗𝑗=3

𝑛𝑛 (𝑗𝑗 − 2) 𝑃𝑃(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑗𝑗 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝)
 = 2 + [1𝑃𝑃3 + 2𝑃𝑃4 + ⋯+ 𝑛𝑛 − 2 𝑃𝑃 𝑛𝑛]
 = 2 + 1 − 𝑃𝑃1 − 𝑃𝑃2 + 1 − 𝑃𝑃1 − 𝑃𝑃2 − 𝑃𝑃3 … + 𝑃𝑃 𝑛𝑛

 = 2 + ∑𝑗𝑗=3
𝑛𝑛 𝑃𝑃(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑒𝑒𝑒𝑒 𝑒𝑒𝑛𝑛𝑒𝑒𝑝𝑝𝑒𝑒 𝑗𝑗 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝)

U Kang (2016) 25

QBS Probe Proof (2)

 (Proof cont.)
 Let Qj = P(need at least j probes)
 Let X be a random variable denoting the number of items in

L[1]..L[n] smaller than K.

 The probability that each L[i] is smaller than K is 𝑝𝑝 = 𝐾𝐾−𝐿𝐿[1]
𝐿𝐿 𝑛𝑛 −𝐿𝐿[1]

,
assuming uniform distribution.

 Since each L[i] is independent, X is a binomial distribution with
𝜇𝜇 = 𝑝𝑝𝑛𝑛 and 𝜎𝜎2 = 𝑝𝑝 1 − 𝑝𝑝 𝑛𝑛

 𝑄𝑄𝑗𝑗 ≤ 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝 𝑋𝑋 − 𝜇𝜇 ≥ 𝑗𝑗 − 2 𝑛𝑛 ≤ 𝜎𝜎2

𝑗𝑗−2 𝑛𝑛
2 = 𝑝𝑝(1−𝑝𝑝)

(𝑗𝑗−2)2

Chebyshev inequality:

𝑷𝑷(𝑿𝑿 − 𝝁𝝁 ≥ 𝒄𝒄) ≤
𝝈𝝈𝟐𝟐

𝒄𝒄𝟐𝟐

U Kang (2016) 26

QBS Probe Proof (3)

 (Proof cont.)
 Average number of probes in a step of QBS

 = 2 + ∑𝑗𝑗=3
𝑛𝑛 𝑃𝑃(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑒𝑒𝑒𝑒 𝑒𝑒𝑛𝑛𝑒𝑒𝑝𝑝𝑒𝑒 𝑗𝑗 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛𝑝𝑝)

 = 2 + ∑𝑗𝑗=3
𝑛𝑛 𝑄𝑄𝑗𝑗

 ≤ 2 + ∑𝑗𝑗=3
𝑛𝑛 𝑝𝑝 1−𝑝𝑝

𝑗𝑗−2 2

 ≤ 2 + ∑𝑗𝑗=3
𝑛𝑛 1

4 𝑗𝑗−2 2

 < 2 + 1
4
∑𝑗𝑗=1∞ 1

𝑗𝑗2
= 2 + 1

4
𝜋𝜋2

6
≈ 2.4

	슬라이드 번호 1
	In This Lecture
	Searching Ordered Arrays (1)
	Searching Ordered Arrays (2)
	Searching Ordered Arrays (3)
	Jump Search
	Analysis of Jump Search
	Jump Search Analysis (cont)
	Interpolation Search
	Quadratic Binary Search (QBS)
	Quadratic Binary Search (cont)
	QBS Cost
	QBS Probe Count
	Comparison
	Summary (Until This Point)
	Lists Ordered by Frequency
	Examples (1)
	Examples (2)
	Zipf Distributions
	Zipf Distributions
	What you need to know
	슬라이드 번호 22
	슬라이드 번호 23
	QBS Probe Proof (1)
	QBS Probe Proof (2)
	QBS Probe Proof (3)

