
U Kang (2016) 1

Data Structure

Lecture#23: Graphs
(Chapter 11)

U Kang
Seoul National University

U Kang (2016) 2

In This Lecture

 Basic terms and definitions of graphs

 How to represent graphs

 Graph traversal methods

U Kang (2016) 3

Graphs

 A graph G = (V, E) consists of a set of vertices
(or nodes) V, and a set of edges E, such that each
edge in E is a connection between a pair of
vertices in V.
 Example: Social network, phone call graph, computer

network, …

 The number of vertices is written |V|, and the
number edges is written |E|.

U Kang (2016) 4

Graphs (2)

Undirected Graph Directed Graph Weighted Graph

U Kang (2016) 5

Paths and Cycles

 Path: A sequence of vertices v1, v2, …, vn of length
n-1 with an edge from vi to vi+1 for 1 ≤ i < n.
 E.g., 0, 4, 1, 3, 2, 4 in the graph below is a path

 A path is simple if all vertices on the path are distinct.
 E.g., 0, 4, 1, 3, 2 in the graph below is a simple path

U Kang (2016) 6

Paths and Cycles

 A cycle is a path of length 3 or more that connects vi
to itself.
 E.g., 1, 3, 2, 4, 1, 3, 2, 4, 1 in the graph below is a cycle

 A cycle is simple if all vertices on the path are
distinct, except the first and the last vertices
 E.g., 1, 3, 2, 4, 1 in the graph below is a simple cycle

U Kang (2016) 7

Connected Components

 An undirected graph is connected if there is at
least one path from any vertex to any other.

 The maximum connected subgraphs of an
undirected graph are called connected
components.

Connected
Component 1

Connected
Component 2

Connected
Component 3

U Kang (2016) 8

Directed Representation

Adjacency
Matrix

Adjacency
List

U Kang (2016) 9

Undirected Representation

Adjacency
Matrix

Adjacency
List

U Kang (2016) 10

Representation Costs

 Adjacency Matrix:
 Θ(|V|2) space

 Adjacency List:
 Θ(|V| + |E|) space.
 What is the maximum size of |E|?

 Answer: |V|2

 When is Adjacency List more space-efficient than
Adjacency Matrix?
 For sparse graphs (|E| << |V|2)

 When is Adjacency Matrix more space-efficient than
Adjacency List?
 For dense graphs (|E| ~ |V|2)

U Kang (2016) 11

Graph ADT
interface Graph { // Graph class ADT
public void Init(int n); // Initialize
public int n(); // # of vertices
public int e(); // # of edges
public int first(int v); // First neighbor
public int next(int v, int w); // Neighbor
public void setEdge(int i, int j, int wght);
public void delEdge(int i, int j);
public boolean isEdge(int i, int j);
public int weight(int i, int j);
public void setMark(int v, int val);
public int getMark(int v); // Get v’s Mark

}

U Kang (2016) 12

Graph Traversals

 Some applications require visiting every vertex in
the graph exactly once.

 The application may require that vertices be
visited in some special order based on graph
topology.

 Examples: artificial intelligence search, shortest
paths problems

 Important Traversals
 Depth First Search (DFS)
 Breadth First Search (BFS)
 Topological Sort

U Kang (2016) 13

Graph Traversals (2)

 To insure visiting all vertices:

void graphTraverse(Graph G) {
int v;
for (v=0; v<G.n(); v++)
G.setMark(v, UNVISITED); // Initialize

for (v=0; v<G.n(); v++)
if (G.getMark(v) == UNVISITED)

doTraverse(G, v);
}

U Kang (2016) 14

Depth First Search (1)

 Main Idea
 Start from a vertex s
 Visit an unvisited neighbor v of s
 Visit an unvisited neighbor v’ of v
 … continue until all vertices are visited

Starting
Vertex: A

U Kang (2016) 15

Depth First Search (2)
// Depth first search
void DFS(Graph G, int v) {

PreVisit(G, v); // Take appropriate action
G.setMark(v, VISITED);
for (int w = G.first(v); w < G.n();

w = G.next(v, w))
if (G.getMark(w) == UNVISITED)

DFS(G, w);
PostVisit(G, v); // Take appropriate action

}

U Kang (2016) 16

Depth First Search (3)

Cost: Θ(|V| + |E|).

U Kang (2016) 17

Breadth First Search (1)

 Breadth First Search (BFS)
 Like DFS, but replace stack with a queue.
 Visit vertex’s neighbors before continuing deeper in

the tree.

 BFS Algorithm
 Start from a vertex s
 Visit all neighbors of s
 Visit all neighbors of neighbors of s
 … continue until all vertices are visited

U Kang (2016) 18

Breadth First Search (2)
void BFS(Graph G, int start) {
Queue<Integer> Q = new AQueue<Integer>(G.n());
Q.enqueue(start);
G.setMark(start, VISITED);
while (Q.length() > 0) { // For each vertex

int v = Q.dequeue();
PreVisit(G, v); // Take appropriate action
for (int w = G.first(v); w < G.n();

w = G.next(v, w))
if (G.getMark(w) == UNVISITED) {
// Put neighbors on Q
G.setMark(w, VISITED);
Q.enqueue(w);

}
PostVisit(G, v); // Take appropriate action

}
}

U Kang (2016) 19

Breadth First Search (3)

Cost: Θ(|V| + |E|).

1

2

3

4

5
6

Starting
Vertex: A

U Kang (2016) 20

Topological Sort (1)

 Problem: Given a set of jobs, courses, etc., with
prerequisite constraints, output the jobs in an
order that does not violate any of the
prerequisites.
 J2 cannot start before J1; J4 cannot start before J2 and

J3; …

U Kang (2016) 21

Topological Sort (2)

 May have several solutions
 E.g., It doesn’t matter which of J4 or J6 comes first; same for J2 or J3
 J1, J3, J2, J4, J6, J5, J7 is a valid solution
 J1, J2, J3, J6, J4, J5, J7 is a valid solution, too

 Algorithm
 Based on DFS
 Based on Queue

U Kang (2016) 22

Topological Sort with DFS (1)

 Main Idea (reverse topological sort)
 Perform DFS from each of the vertices, visiting

unvisited vertices; print out a vertex v in PostVisit for v
 It prints out vertices in reverse topological sort order
 Correctness: Assume a dependency from v1 to v2. Can

v1 be printed before v2? Why?

U Kang (2016) 23

Topological Sort with DFS (2)
void topsort(Graph G) {
for (int i=0; i<G.n(); i++)

G.setMark(i, UNVISITED);
for (int i=0; i<G.n(); i++)

if (G.getMark(i) == UNVISITED)
tophelp(G, i);

}

void tophelp(Graph G, int v) {
G.setMark(v, VISITED);
for (int w = G.first(v); w < G.n();

w = G.next(v, w))
if (G.getMark(w) == UNVISITED)

tophelp(G, w);
printout(v);

}

U Kang (2016) 24

Topological Sort with DFS (3)

 Is the order of calling vertices important?
 No. Why?

U Kang (2016) 25

Topological Sort with Queue (1)

 Main Idea
 Visit all edges, counting the number of incoming edges for

each vertex
 All vertices with no incoming edges are on the queue
 Process the queue

 When v is taken off the queue, print v, and all outgoing neighbors of v’s
counts decrement by one

 Place on the queue any neighbor of v with count zero.

U Kang (2016) 26

Topological Sort with Queue (2)
void topsort(Graph G) {
Queue<Integer> Q = new AQueue<Integer>(G.n());
int[] Count = new int[G.n()];
int v, w;
for (v=0; v<G.n(); v++) Count[v] = 0;
for (v=0; v<G.n(); v++)

for (w=G.first(v); w<G.n(); w=G.next(v, w))
Count[w]++;

for (v=0; v<G.n(); v++)
if (Count[v] == 0) Q.enqueue(v);

while (Q.length() > 0) {
v = Q.dequeue().intValue();
printout(v);
for (w=G.first(v); w<G.n(); w=G.next(v, w)) {

Count[w]--;
if (Count[w] == 0)
Q.enqueue(w);

}
}

}

U Kang (2016) 27

What You Need to Know

 Basic terms and definitions of graphs

 How to represent graphs
 When to use adjacency matrix or adjacency list

 Graph traversal methods
 Main ideas and costs of DFS, BFS, and topological sort

U Kang (2016) 28

Questions?

	슬라이드 번호 1
	In This Lecture
	Graphs
	Graphs (2)
	Paths and Cycles
	Paths and Cycles
	Connected Components
	Directed Representation
	Undirected Representation
	Representation Costs
	Graph ADT
	Graph Traversals
	Graph Traversals (2)
	Depth First Search (1)
	Depth First Search (2)
	Depth First Search (3)
	Breadth First Search (1)
	Breadth First Search (2)
	Breadth First Search (3)
	Topological Sort (1)
	Topological Sort (2)
	Topological Sort with DFS (1)
	Topological Sort with DFS (2)
	Topological Sort with DFS (3)
	Topological Sort with Queue (1)
	Topological Sort with Queue (2)
	What You Need to Know
	슬라이드 번호 28

