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In This Lecture

 Basic terms and definitions of graphs

 How to represent graphs

 Graph traversal methods
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Graphs

 A graph G = (V, E) consists of a set of vertices 
(or nodes) V, and a set of edges E, such that each 
edge in E is a connection between a pair of 
vertices in V.
 Example: Social network, phone call graph, computer 

network, …

 The number of vertices is written |V|, and the 
number edges is written |E|.
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Graphs (2)

Undirected Graph Directed Graph Weighted Graph
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Paths and Cycles

 Path: A sequence of vertices v1, v2, …, vn of length   
n-1 with an edge from vi to vi+1 for   1 ≤ i < n.
 E.g., 0, 4, 1, 3, 2, 4  in the graph below is a path

 A path is simple if all vertices on the path are distinct.
 E.g., 0, 4, 1, 3, 2 in the graph below is a simple path
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Paths and Cycles

 A cycle is a path of length 3 or more that connects vi
to itself.
 E.g., 1, 3, 2, 4, 1, 3, 2, 4, 1 in the graph below is a cycle

 A cycle is simple if all vertices on the path are 
distinct, except the first and the last vertices
 E.g., 1, 3, 2, 4, 1 in the graph below is a simple cycle
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Connected Components

 An undirected graph is connected if there is at 
least one path from any vertex to any other.

 The maximum connected subgraphs of an 
undirected graph are called connected 
components.

Connected 
Component 1

Connected 
Component 2

Connected 
Component 3
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Directed Representation

Adjacency
Matrix

Adjacency
List
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Undirected Representation

Adjacency
Matrix

Adjacency
List
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Representation Costs

 Adjacency Matrix:
 Θ(|V|2) space

 Adjacency List:
 Θ(|V| + |E|) space.
 What is the maximum size of |E|?

 Answer: |V|2

 When is Adjacency List more space-efficient than 
Adjacency Matrix?
 For sparse graphs (|E| << |V|2)

 When is Adjacency Matrix more space-efficient than 
Adjacency List?
 For dense graphs (|E| ~ |V|2)
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Graph ADT
interface Graph {          // Graph class ADT
public void Init(int n); // Initialize
public int n();          // # of vertices
public int e();          // # of edges
public int first(int v); // First neighbor
public int next(int v, int w); // Neighbor
public void setEdge(int i, int j, int wght);
public void delEdge(int i, int j);
public boolean isEdge(int i, int j);
public int weight(int i, int j);
public void setMark(int v, int val);
public int getMark(int v);  // Get v’s Mark

}
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Graph Traversals

 Some applications require visiting every vertex in 
the graph exactly once.

 The application may require that vertices be 
visited in some special order based on graph 
topology.

 Examples: artificial intelligence search, shortest 
paths problems

 Important Traversals
 Depth First Search (DFS)
 Breadth First Search (BFS)
 Topological Sort
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Graph Traversals (2)

 To insure visiting all vertices:

void graphTraverse(Graph G) {
int v;
for (v=0; v<G.n(); v++)
G.setMark(v, UNVISITED); // Initialize 

for (v=0; v<G.n(); v++)
if (G.getMark(v) == UNVISITED)

doTraverse(G, v);
}
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Depth First Search (1)

 Main Idea
 Start from a vertex s
 Visit an unvisited neighbor v of s
 Visit an unvisited neighbor v’ of v
 … continue until all vertices are visited

Starting 
Vertex: A
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Depth First Search (2)
// Depth first search 
void DFS(Graph G, int v) {

PreVisit(G, v);  // Take appropriate action
G.setMark(v, VISITED);
for (int w = G.first(v); w < G.n();

w = G.next(v, w))
if (G.getMark(w) == UNVISITED)

DFS(G, w);
PostVisit(G, v); // Take appropriate action

}
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Depth First Search (3)

Cost: Θ(|V| + |E|).
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Breadth First Search (1)

 Breadth First Search (BFS)
 Like DFS, but replace stack with a queue.
 Visit vertex’s neighbors before continuing deeper in 

the tree.

 BFS Algorithm
 Start from a vertex s
 Visit all neighbors of s
 Visit all neighbors of neighbors of s
 … continue until all vertices are visited
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Breadth First Search (2)
void BFS(Graph G, int start) {
Queue<Integer> Q = new AQueue<Integer>(G.n());
Q.enqueue(start);
G.setMark(start, VISITED);
while (Q.length() > 0) { // For each vertex

int v = Q.dequeue();
PreVisit(G, v); // Take appropriate action
for (int w = G.first(v); w < G.n();

w = G.next(v, w))
if (G.getMark(w) == UNVISITED) {
// Put neighbors on Q
G.setMark(w, VISITED);
Q.enqueue(w);

}
PostVisit(G, v); // Take appropriate action

}
}
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Breadth First Search (3)

Cost: Θ(|V| + |E|).

1

2

3

4

5
6

Starting 
Vertex: A
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Topological Sort (1)

 Problem: Given a set of jobs, courses, etc., with 
prerequisite constraints, output the jobs in an 
order that does not violate any of the 
prerequisites.
 J2 cannot start before J1; J4 cannot start before J2 and 

J3; …
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Topological Sort (2)

 May have several solutions
 E.g., It doesn’t matter which of J4 or J6 comes first; same for J2 or J3
 J1, J3, J2, J4, J6, J5, J7 is a valid solution
 J1, J2, J3, J6, J4, J5, J7 is a valid solution, too

 Algorithm
 Based on DFS
 Based on Queue
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Topological Sort with DFS (1)

 Main Idea (reverse topological sort)
 Perform DFS from each of the vertices, visiting 

unvisited vertices; print out a vertex v in PostVisit for v
 It prints out vertices in reverse topological sort order
 Correctness: Assume a dependency from v1 to v2.  Can 

v1 be printed before v2? Why?



U Kang (2016) 23

Topological Sort with DFS (2)
void topsort(Graph G) {
for (int i=0; i<G.n(); i++)

G.setMark(i, UNVISITED);
for (int i=0; i<G.n(); i++)

if (G.getMark(i) == UNVISITED)
tophelp(G, i);

}

void tophelp(Graph G, int v) {
G.setMark(v, VISITED);
for (int w = G.first(v); w < G.n();

w = G.next(v, w))
if (G.getMark(w) == UNVISITED)

tophelp(G, w);
printout(v);

}
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Topological Sort with DFS (3)

 Is the order of calling vertices important?
 No. Why?
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Topological Sort with Queue (1)

 Main Idea 
 Visit all edges, counting the number of incoming edges for 

each vertex
 All vertices with no incoming edges are on the queue
 Process the queue

 When v is taken off the queue, print v, and all outgoing neighbors of v’s 
counts decrement by one

 Place on the queue any neighbor of v with count zero. 
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Topological Sort with Queue (2)
void topsort(Graph G) {
Queue<Integer> Q = new AQueue<Integer>(G.n());
int[] Count = new int[G.n()];
int v, w;
for (v=0; v<G.n(); v++) Count[v] = 0;
for (v=0; v<G.n(); v++)

for (w=G.first(v); w<G.n(); w=G.next(v, w))
Count[w]++;

for (v=0; v<G.n(); v++)
if (Count[v] == 0) Q.enqueue(v);

while (Q.length() > 0) {
v = Q.dequeue().intValue();
printout(v);
for (w=G.first(v); w<G.n(); w=G.next(v, w)) {

Count[w]--;
if (Count[w] == 0)
Q.enqueue(w);

}
}

}



U Kang (2016) 27

What You Need to Know

 Basic terms and definitions of graphs

 How to represent graphs
 When to use adjacency matrix or adjacency list

 Graph traversal methods
 Main ideas and costs of DFS, BFS, and topological sort
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Questions?
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