Liquid surface and liquid-liquid interface

Reading: Shaw, ch. 4

Phenomena at curved surfaces

1. Pressure difference across a surface

- Liquid drop suspended in vacuum \rightarrow The equilibrium shape is a sphere
- \rightarrow Minimization of the surface area for a given volum.
- Can you prove it using the calculus of variation?
- The free energy change dG in contraction from $r \rightarrow r\text{-}dr$ is

$$dG = -88\pi r dr + \Delta p \cdot 4\pi r dr$$

at equilibrium $dG = 0$.

$$\Delta p = \frac{8\pi r s}{4\pi r^2} = \frac{2s}{r} \quad Y_{oung-Laplace} lg.$$

In general, a Surface has two principal
curvature of radic r, and rz

$$\Delta p = (\frac{1}{r} + \frac{1}{r_2}) S$$

The liquid drop is in a compressed state.

p.

concave

convex

The illustration of the equation of Young-Laplace

2. Equilibrium vapor pressure of a liquid drop

A Liquid drop is in a compressed state

 \rightarrow The inner pressure is higher than that of liquid with a flat surface by ΔP

 \rightarrow in a higher free energy state \rightarrow higher vapor pressure.

Chemical potential change in the processes 1 and 2

$$\mathcal{M}_{g}^{(c)} - \mathcal{M}_{g}^{(f)} = -\int V \, d\rho \sim -V_{m} \Delta \rho$$

$$\mathcal{M}_{g}^{(c)} - \mathcal{M}_{g}^{(f)} = RT / n \left(\frac{P_{2}}{P_{1}} \right)$$

Where $V_{\rm m}$ is the molar volume of the liquid, which is assumed to be constant.

The two quantities should be the same, and therefore

$$V_m \Delta P = RT l_n (P_2/P_1) \text{ or}$$

$$\frac{2V_m \gamma}{r} = RT (n(P_2/P_1))$$

$$P_2/P_1 = \exp[\frac{2V_m \gamma}{rRT}]$$

If $r = \infty$, $P_1 = P_2$ For finite $r P_2 > P_1$ For H_2O ($\gamma = 72.8 \text{ mN/m}$) at 300 K $r = 1000 \text{ Å} \rightarrow P_2/P_1 = 1.01$ $r = 100 \text{ Å} \rightarrow P_2/P_1 = 101$ $r = 10 \text{ Å} \rightarrow P_2/P_1 = 3.0$

Related concepts

• Size-dependent solubility

The same concept can be equally applied to the solubility of a particle $c_2/c_1 = \exp(-2V_m \gamma/rRT)$, where c is the concentration in the solution.

Capillary condensation in porous materials

Oswald ripening

desolution \leftrightarrow deposition process is in a dynamic equilibrium to maintain a constant saturation solubility.

small particle \rightarrow high solubility and large particle \rightarrow low solubility Large particles grow at the expense of the smaller particles \rightarrow aging minimize the total surface area \rightarrow the way to reach a G_{min}, an equilibrium state

Agl sol \rightarrow highly insoluble \rightarrow little tendency of ripening (slow kinetics) $CaCO_3$ sol \rightarrow highly soluble \rightarrow strong tendency of ripening (fast kinetics)

Sintering

solid in (on) solid

3. Formation of a new phase : nucleation and crystal growth

vapor \rightarrow liquid drop solute in a liquid \rightarrow crystal

- In the initial stage of condensation a liquid drop of radius r is formed from a supersaturates vapor.
- Small drop has a high vapor pressure $\rightarrow\,$ it tends to reevaporate $\rightarrow\,$
- Therefore, only droplets of a radius greater than a crital radius r_c (embryo) survive and grow.
- This process is called nucleation and the neuclei grow in time.

Consider the free energy change in nucleation of a droplet from a vapor.

nA (gas,P) \rightarrow A_n (small liquid drop, r)

$$\Delta G = -nkT/nP/P_o + 4\pi r^2 \delta$$

= $-\frac{4}{3}\pi r^3 \frac{P}{M} \ln P/P_o + 4\pi r^2 \delta$
 $d(AG)/dr = o \quad \text{at} \quad r = V_c$
 $V_c = 2\delta V_m/RT/n(P/P_o)$

M= molular weight, ρ = density P₀ = equilibitim vapor pressure P/P₀ = degree of supersturation

This means there is always a free energy barrier of $\Delta Gm = 16 \pi \gamma^3 V_m /3 \{RT \ln (P/P_0)\}^2$, which is overcome by thermal fluctuation.

* Related concepts

artificial raining: spraying dry ice particle in the damp air seeding in crystallization: adding a ctrstal seeds in a supersaturated solution

4. Capillary rise and depression

- Wetting

 $\theta = 0^{\circ}$:complete wetting $\theta = 180^{\circ}$:complete dewetting

- Wetting occurs to minimize the total free energy which includes the surface and interfacial free energies.

- Force balance at the interface
- Criteria for wetting When the interface area is increased by dA,
- $\begin{aligned} \mathsf{dG} &= \gamma_{\,\,\mathsf{ls}} \;\; \mathsf{dA} + \gamma_\mathsf{l} \cos \theta \; \mathsf{dA} \gamma_\mathsf{s} \; \mathsf{dA} \\ &= (\gamma_{\,\,\mathsf{ls}} + \gamma_\mathsf{l} \cos \theta \gamma_\mathsf{s} \;) \; \mathsf{dA} = x \; \mathsf{dA} \end{aligned}$

If $x < 0 \rightarrow$ wetting occurs, and If $x > 0 \rightarrow$ dewetting occurs.

There is a certain contact angle for which x = 0: equilibrium contact angle

Capillary rise

- Force balance at the top of the miniscus

Total wetting force = gravitational force of the water column

 $\begin{array}{l} 2\pi \; r \; \gamma \; cos \; \theta = \left(\rho - \rho_0\right) \left(\pi \; r \;^2 \; h\right) \; g \; = \Delta \rho \; (\pi \; r \;^2 \; h) \; g \; , \\ \rho \; = \mbox{deisity of the liquid} \\ \rho_0 = \mbox{deisity of the air} \end{array}$

$h = 2 \gamma \cos \theta / \Delta \rho g r$

Another view

pressure difference between the points Q and Q₀ : $\Delta P = \rho_0 g h$ pressure difference between the points P and P₀ : $\Delta P = -2 \gamma / R + \rho g h$

The two ΔP 's should be the same. $r = R \cos \theta$

 $2 \gamma / R = \Delta \rho g h \rightarrow h = 2 \gamma \cos \theta / \Delta \rho g r$

More accurately, h' = h + r/3

capillary rise capillary depression

Interfacial tension

- Force /unit surface area for a pure liquid = γ
- Force /unit interface area at a liquid-liquid interface/unit length = γ_i
- The total unbalanced force acting on the molecules at the interface

 $\gamma_{i} = (\gamma_{1} - \gamma_{12}) - (\gamma_{2} + \gamma_{21}) = \gamma_{1} + \gamma_{2} - 2\gamma_{12}$ $\gamma_{12} = \gamma_{ow}$ γ_2 where $\gamma_{12} = \gamma_{21}$ (action-reaction) (ydwater × Yoil)1/2 Yoil Phase 2 γ_i = free energy per unit interfacial area Oil phase If 1 and 2 are the same materials, $\gamma_i = 0$ Phase Consider the case where 2 surfaces are Water phase brought from infinity to contact (rdwater × Yoil)1/2 Ywater

Additivity of intermolecular force

 $\gamma_{W} = \gamma_{W}^{d} + \gamma_{W}^{h}$ $\gamma_{Hg} = \gamma_{Hg}^{d} + \gamma_{Hg}^{m}$

$$\gamma_{\rm OW} = \gamma_{\rm O}^{\rm d} + (\gamma_{\rm W}^{\rm d} + \gamma_{\rm W}^{\rm h}) - 2 \times (\gamma_{\rm W}^{\rm d} \times \gamma_{\rm O}^{\rm d})^{\nu_2}$$

Ex: n-hexane-water interface

$$51.1 = 18.4 + 72.8 - 2 \times (\gamma_W^d \times 18.4)^{\nu_2}$$

 $\gamma_{\rm W}^{\rm d}=21.8~{\rm mNm^{-1}}$

 $\gamma_{\rm W}^{\rm h} = 72.8 - 21.8 = 51.0 \, \rm m N m^{-1}$

Table 4.1 Surface tensions and interfacial tensions against water for liquids at 20°C (in mN m⁻¹)

 γ_{12}

Υı

Liquid	γο	γ _i	Liquid	γο	γ _i
Water	72.8	_	Ethanol	22.3	
Benzene	28.9	35.0	n-Octanol	27.5	8.5
Acetic acid	27.6	_	<i>n</i> -Hexane	18.4	51.1
Acetone	23.7	-	<i>n</i> -Octane	21.8	50.8
CCl ₄	26.8	45.1	Mercury	485	375

NaCl solution

Surface tension of 2-component systems

Surface activity

 $\gamma = \gamma_0 - \pi$

 π : surface pressure(expanding pressure) Surface active agent, surfactant

Alcohol in water

Adsorption and orientation at interfaces

Thermodynamics of surface (or interface)

- The surface tension γ of a pure solvent changes when a solute is added.
- $\Delta \gamma$ (= γ γ_0) depends on the concentration **c** of the solute.
- Thermodynamics can tell the functional relation $\Delta \gamma(c)$.
- The thermodynamic equations for a bulk need to be modified when applied for a surface.

 $\begin{array}{ll} dU = dq + dw = TdS - P \ dV & \mbox{for single-component bulk} \\ dU = dq + dw = TdS - P \ dV + \Sigma \ \mu_i n_i & \mbox{for multi-component bulk} \\ U = TS - PV + \Sigma \ \mu_i n_i & \mbox{integration at constant T,P, and } \mu_i \\ dU = SdT - VdP + \Sigma \ n_i d\mu_i = 0 \end{array}$

Gibbs dividing surface (interface)

- The interface of a real system is blurred.
- The system is considered consisting of
 α phase + βphase + σ plane (ideal abrupt interface)
- The choice of the locus of the σ plane is arbitrarily.

 $\begin{array}{l} dU^{\sigma}=dq+dw=TdS^{\sigma}-P\;dV^{\sigma}+\gamma\;dA+\Sigma\;\mu dn_{i}^{\sigma}\;;\;surface,\;multi-component\\ U^{\sigma}=q+w=TS^{\sigma}-P\;V^{\sigma}+\gamma\;A+\Sigma\;\mu n_{i}^{\sigma} \end{array}$

 $dU^{\sigma} = S^{\sigma} dT - V^{\sigma} dP + A d\gamma + \Sigma n_i^{\sigma} d\mu_i = 0$

Gibs-Duhem equation (extended to include the surface)

Thermodynamic description of mixtures

5.1 Partial molar quantities

a) Partial molar volume $V_J \equiv (\partial V / \partial n_J)_{p,T,n'}$

(1)

Volume change per 1 mole of Jth species added to a large volume of the mixture.

For a binary mixture A+ B,

 V_{A} and V_{B} are the functions of the composition.

Integrating the eq. (2) keeping the composition constant (see the next page)

$$V = \int_{0}^{n_{A}} V_{A} dn_{A} + \int_{0}^{n_{B}} V_{B} dn_{B}$$
$$= V_{A} \int dn_{A} + V_{B} \int dn_{B}$$
$$= V_{A} n_{A} + V_{B} n_{B}$$

- Consider 3 different ways of mixing two liquids: A $(n_A) + B (n_B) \rightarrow n$ moles of a uniform mixture
- The final volume of the mixture is the same independently of the path→ V is a state function.
- Path 3 corresponds to keeping the composition constant (V_A and V_B constant) in the integration.

$$V = \int_{0}^{n_{A}} V_{A} dn_{A} + \int_{0}^{n_{B}} V_{B} dn_{B}$$
$$= V_{A} \int dn_{A} + V_{B} \int dn_{B}$$
$$= V_{A} n_{A} + V_{B} n_{B}$$

- $V = V_A n_A + V_B n_B$
- \bullet V_A and V_B are state functions.
- $dV = V_A dn_A + V_B dn_B$
- In general (assuming V_A, V_B are independent of the composition), $dV = (V_A dn_A + V_B dn_B) + (n_A dV_A + n_B dV_B)$
- $n_A dV_A + n_B dV_B = 0 \rightarrow dV_A = (n_B / n_A) dV_B$
- $\bullet\,dV_A$ and dV_B are not independent of each other.

Why are V_A and V_B the functions of composition?

- $V_{\rm A}$ and $V_{\rm B}$ depend on the intermolecular interactions A-A, A-B, and B-B
- If V(A-B) < V(A-A) and V(B-B),
 V decreases when B(or A) is added to A(or B).

Relation between V_A and V_B

- From $n_A dV_A + n_B dV_B = 0$, $X_A dV_A + X_B dV_B = 0$
- Dividing by dX_A , one gets $X_A (dV_A/dX_A) + X_B (dV_B/dX_A) = 0$.
- The slope of the $V_{A}\text{-}X_{A}\,$ and $V_{B}\,\text{-}X_{B}\,\text{curves}$ (Fig. 5.1) are inter-related.
- Experimental method of measuring V_A (or V_B)
- Measure V upon adding n_A mole of A into a large amount of B (Fig.5-2) \rightarrow The slope is the partial molar volume of A at a given mole fraction X_A .

b) Partial molar Gibbs energy • $\mu_J \equiv (\partial G/\partial n_J)_{p,T,n'}$ (3) $G = \mu_A n_A + \mu_B n_B$ (4) $dG = Vdp - SdT + \mu_A dn_A + \mu_B dn_B$

• At constant T and P, $dG = \mu_A dn_A + \mu_B dn_B$ (5)

In general (assuming μ_A , μ_B are independent of the composition) dG = $\mu_A dn_A + \mu_B dn_B + n_A d\mu_A + n_B d\mu_B$ (6)

(6)- (5),

• $n_A d\mu_A + n_B d\mu_B = 0$: Gibbs-Duhem equation

• d μ_A and d μ_B are not independent \rightarrow When a small amount of material A(or B) is added to a binary system, the change in μ_A and

 μ_B are not independent.

• For a multi-component system, $\sum \mu_J dn_J = 0$

Atkins Physical Chemistry, Eighth Edition © 2006 Peter Atkins and Julio de Paula Using the Gibbs-Duhem equation (text example 5.1)

•
$$\underline{K_2SO_4(s)}_{B} + \underline{H_2O}_{A} \rightarrow K_2SO_4(aq)$$
: binary system

- Given that V_B is experimentally determined as a function of the molality x (= b/b°);
 V_B = 32.28 + 18.216 x^{1/2},
 where b = moles # of K₂SO₄ per 1 kg water (molality)
- Find the expression for $V_A(x)$ with $V_A^* = 18.08$ cm³/mol (pure water)

• Solution

$$n_A dV_A + n_B dV_B = 0$$
; Gibbs-Duhem equation
 $dV_A = - (n_B/n_A) dV_B$
 $n_B/n_A = (b/b^{\circ}) / [1000 \text{ g/ }M_A (g/mol)] = 0.018 \text{ x}$
 $V_A = V_A^* - \int dV_B = V_A^* - 9.108 \int (n_B/n_A) x^{1/2} dx$
 $= V_A^* + (2/3) (0.018) \int (1/2) (0.01821) x^{3/2}$
 $V_A (cm^3/mol) = 18.079 + 0.1094 x^{3/2}$

Gibbs adsorption equation

- In general, the concentration profile of solute is different from that of solvent.
- $dU^{\sigma} = S^{\sigma} dT V^{\sigma} dP + A d\gamma + \Sigma n_i^{\sigma} d\mu_i = 0$
- A d γ + Σ n_i^{σ}d μ _i = 0 at constant T and P
- $\mathbf{n}_i^{\text{total}} = \mathbf{n}_i^{\alpha} + \mathbf{n}_i^{\beta} + \mathbf{n}_i^{\sigma}$, where n is the number of molecules (solvent or solute). \rightarrow Material conservation $\Gamma_i \equiv \mathbf{n}_i^{\sigma}/A$: surface excess
- A d γ + Σ n_i^od μ _i = 0 and d γ = Σ (n_i^o/A)d μ _i = Σ Γ _i d μ _i
- For a binary system, solvent (phase1) + solute (phase 2),

 $d\gamma = - (\Gamma_1 d\mu_1 + \Gamma_2 d\mu_2)$

- The position of the σ plane is conveniently taken so that $\Gamma_1 = 0$ for the solvent.
- Then, $d\gamma = -\Gamma_2 d\mu_2$
- $\mu_2 = \mu_2^0 + RT \ln a_2$ For a dilute solution, $a_2 \sim c_2$
- $d\mu_2 = -RT (dc_2/c_2)$ $\Gamma_2 = -c_2/RT (d\gamma/dc_2)$: Gibbs adsorption equation
- $\Gamma_2 > 0$ (+ adsorption): accumulation of solute at the surface (interface). Namely, the solute likes to be at the surface (interface).
- $\Gamma_2 < 0$ (- adsorption): depletion of solute at the surface (interface). The solute tends to avoid the surface (interface).
- If $\Gamma_2 > 0$, i.e., $d\gamma/dc_2 < 0$, γ decreases with increasing solute concentration.
- Surfactant molecules which causes a large $\Delta \gamma < 0$ strongly positively adsorbs at surface (interface)

concentration profile along the x direction $(-\sigma)$

Surfactant (surface active agent)

- Molecules which drastically reduces the γ of water when added.
- Typically consists of hydrophobic hydrocarbon chain (tail) and hydrophilic group (head) such as -OH, -COOH, -SO₃H, -NH₂ etc.
- Surfactants are used in many important industrial applications.

Classification of surfactant

 Table 4.2
 Surface-active agents

Anionic

Sodium stearate Sodium oleate Sodium dodecyl sulphate Sodium dodecyl benzene sulphonate

Cationic Dodecylamine hydrochloride Hexadecyltrimethyl ammonium bromide

Non-ionic

Polyethylene oxides Spans (sorbitan esters) Tweens (polyoxyethylene sorbitan esters) $CH_{3}(CH_{2})_{16}COO^{-}Na^{+}$ $CH_{3}(CH_{2})_{7}CH=CH(CH_{2})_{7}COO^{-}Na^{+}$ $CH_{3}(CH_{2})_{11}SO_{4}^{-}Na^{+}$ $CH_{3}(CH_{2})_{11}.C_{6}H_{4}.SO_{3}^{-}Na^{+}$ head

tail

CH₃(CH₂)₁₁NH⁺₃Cl⁻ CH₃(CH₂)₁₅N(CH₃)⁺₃Br⁻

e.g. CH₃(CH₂)₁₁(O.CH₂.CH₂)₆OH*

Self-assembly of surfactant: Micelle formation

- When added in water, surfactant molecules strongly positively adsorb at the surface.
- Surfactant molecules in bulk water is thermodynamically unstable, so the bulk concentration is very small.
- The solubility of surfactants in water, especially the ones with a long alkyl chain, is very low.
- Above a certain temperature, Kraft Temperature T_K, the solubility increases rapidly because of micelle formation.
- Isolated surfactant molecules spontaneously form a stable aggregate
- (micelle) above a certain concentration, critical micelle concentration(CMC)
- Micelle formation occurs sharply at CMC like a phase transition.

Table 4.5 Krafft temperatures for	r sodium al	kyl sulphat	es in water	ballons a	aunia
Number of carbon atoms	10	12	14	16	18
Krafft temperature/°C	8	16	30	45	56

Sharpness of CMC

- mS \leftrightarrow S_m : β = fraction of monomer in micelles $c(1-\beta)$ $c\beta/m$
- K = (c β /m) / [c(1- β)]^m $\rightarrow \beta = \beta$ (c) at constant K
- Kmc^{m-1} = $\beta/(1-\beta)^m$
- Typically, m ~ 100 and CMC ~ 10^{-3} .
- $\beta(c)$ is plotted in the bottom Figure. Transition is fairly sharp $\rightarrow \lim (m \rightarrow \infty) \beta(c)$ is a step function.

Spherical micelle

- Nearly monodispersed.
- The size is limited and it depends on the nature of the lyophobic part of the surfactant.
 m S↔ S_m : S = monomer, S_m = micelle,
 m = aggregation number
- Counter ion binding: counter ion /S < 1

TABLE 8.1 Critical Micelle Concentration, Degree of Aggregation, and Effective Fractional

 Ionization for Several Surfactants With and Without Added Salt

Surfactant	Solution	Critical micelle concentration (mole liter ⁻¹)	Aggregation number n	Ratio of charge to aggregation number, z/n
Sodium dodecyl	Water	0.00810	80	0.18
sulfate	0.02 M NaCl	0.00382	94	0.14
	0.03 M NaCl	0.00309	100	0.13
	0.10 M NaCl	0.00139	112	0.12
	0.20 M NaCl	0.00083	118	0.14
	0.40 M NaCl	0.00052	126	0.13
Dodecylamine	Water	0.01310	56	0.14
hydrochloride	0.0157 M NaCl	0.01040	93	0.13
	0.0237 M NaCl	0.00925	101	0.12
	0.0460 M NaCl	0.00723	142	0.09
Decyl trimethyl	Water	0.06800	36	0.25
ammonium bromide	0.013 M NaCl	0.06340	38	0.26
Dodecyl trimethyl	Water	0.01530	50	0.21
ammonium bromide	0.013 M NaCl	0.01070	56	0.17
Tetradecyl trimethyl	Water	0.00302	75	0.14 8
ammonium bromide	0.013 M NaCl	0.00180	96	0.13

n = # of CH_2 unit in a straight chain hydrocarbon

n	12	14	16	18
m	33	46	60	78

CH₃(CH₂)₁₁-O-S(-O)₂-O⁻Na⁺ Sodium dodecyl sulphate

Source: J. N. Phillips, Trans. Faraday Soc., 51, 561 (1955).

Structure of micelle

- Spherical, spherical bilayer, hexagonal, lamella
- Typically, micelles tends to be approximately spherical over a fairly wide range of concentration above CMC.
- There are often marked transition to larger, non-spherical liquid crystal structure at high concentrations.

Evidence for micelle formation

See the next page

Fig. 3-20: Schematic diagram of physical property changes of aqueous solutions of sodium dodecyl sulfate at 25°C as a function of concentration.

Micelle structures; a) spherical, b) spherical vesicle bilayer, c) hexagonal, d) lamella

Biological cell membrane

Physical property changes at c.m.c.

- 1. Molar conductivity Λ of ionic surfactants
- Ions contributes to the conductivity but ∧ gradually ↓ with increasing concentration because of ion-ion interactions.
- A sharp decrease in Λ above the c.m.c. due to micelle formation.
 - 1) The total viscous drag is reduced when micelles are formed.
 - 2) Counter-ions becomes kinetically a part of micelle \rightarrow the net charge of a micelle z is much smaller than n, reducing the # of counter-ions avail for carrying current.
 - 3) The electrophoretic retardation effect of the ionic atmospheres of unattached counter-ions is greatly increases.
- the last two effects are responsible for the sharp decrease in Λ when micells are formed.

2. Osmotic pressure Π

- $\pi V = cRT$ (van't Hoff eq.)
- The # of molecules only slightly increases above c.m.c.

3. Turbidity τ

- Turbidity is due the scattering of visible light by particles.
- The scattering power increases with increasing particle size, reaching about maximum when the size is comparable to the wavelength.
- The size of an unassociated surfactant molecule is too small to appreciably scatter visible light.
- When micelle is formed, it can significantly scatter light.

4. Surface tension γ

- Surface tension sharply decreases with increasing surfactant concentration.
- However, when micelle is formed, it's concentration (number-based) increases very slowly.

Factors affecting CMC

1. Hydrophobic chain length n of straight aliphatic surfactant.

Table 4.3 Critical micelle concentrations for a homologous series of sodium alkyl sulphates in water at $40^{\circ}C^{11}$

Number of carbon atoms	8	10	12	14	16	18
$c.m.c./10^{-3} mol dm^{-3}$	140	33	8.6	2.2	0.58	0.23

ionic: $n \rightarrow n+1$, CMC(n+1)/CMC(n) ~ 1/2 non-ionic: $n \rightarrow n+1$, CMC(n+1)/CMC(n) ~ 1/3 log(CMC) = A - Bn: Klevens constants A and B

Table 3-6: Some values for CMC and aggregation number. From [From Rosen, M. J., **Surfactants and Interfacial Phenomena**, 2nd Ed., pp. 108ff, Wiley, New York, 1989.]

Surfactant	Medium	$T(^{\circ}C)$	CMC (mM)	Agg. No., n	
C10H21SO4Na+	H ₂ O	40	33	40 _{30°C}	
C12H25SO4 Na*	H_2O	40	8.6	54	
C14H29SO4Na*	H ₂ O	40	2.2		
C12H25SO4 Na+	H ₂ O	25	8.2		
C12H25SO4Na*	0.01 M NaCl	21	5.6		
C12H25SO4Na+	0.03 M NaCl	21	3.2		
C12H25SO4 Na*	0.10 M NaCl	21	1.5	90 _{20°C}	
C14H29SO4Na*	0.01 M NaCl	23		138	
C12H25SO4 Na+	3M urea	25	9.0		
C12H25N(CH3)3+Br	H ₂ O	25	1.6	50 _{23°C}	
n-C ₁₂ H ₂₅ (C ₂ H ₄ O) ₇ OH	H ₂ O	25	0.05		
n-C12H25(C2H4O)6OH	H ₂ O	25	0.05		
n-C ₁₂ H ₂₅ (C ₂ H ₄ O) ₁₄ OH	H ₂ O	25	0.055	- atvinted	
C16H33(C2H4O)6OH	H ₂ O	25		2,430	
C16H33(C2H4O)6OH	H ₂ O	34		16,600	

3 Critical micelle concentrations for a homologour series

urfactant series

lonic surfactants

Surfactant series	<i>T</i> (°C)	A	В
Na carboxylates (soaps)	20	1.85	0.30
K carboxylates (soaps)	25	1.92	0.29
Na (K) n-alkyl 1-sulfates or -sulfonates	25	021.51	0.30
Na n-alkane-1-sulfonates	40	1.59	0.29
Na n-alkane-1-sulfonates	55	1.15	0.26
Na n-alkane-1-sulfonates	60	1.42	.0.28
Na n-alkane-1-sulfates	45	1.42	0.30
Na n-alkane-1-sulfates	60	1.35	0.28
Na n-alkane-2-sulfates	55	1.28	0.27
Na p-n-alkylbenzenesulfonates	55	1.6 ₈	0.29
Na p-n-alkylbenzenesulfonates	70	1.33	0.27
n-Alkylammonium chlorides	25	1.25	0.27
n-Alkylammonium chlorides	45	1.7,	0.30
n-Alkyltrimethylammonium bromides	25	1.72	0,30
n-Alkyltrimethylammonium chlorides (in 0.1 M NaCl)	25	1.23	0.33
n-Alkyltrimethylammonium bromides	60	1.7,	0.29
n-Alklpyridinium bromides	30	1.72	0.31
$n-C_{n}H_{2n+1}(OC_{2}H_{4})_{6}OH$	25	1.82	0.49

PEO surfactants

Surfactant series	<i>T</i> (°C)	A'	B'
n-C12H25(OC2H4)x OH	23	-4.4	+0.046
n-C ₁₂ H ₂₅ (OC ₂ H ₄) _x OH	55	-4.8	+0.013
p-t-C ₈ H ₁₇ C ₆ H ₄ (OC ₂ H ₄) _x OH	25	-3.8	+0.029
C ₉ H ₁₉ C ₆ H ₄ (OC ₂ H ₄) _x OH	25	-4.3	+0.020
n-C ₁₆ H ₃₃ (OC ₂ H ₄) _x OH	25	-5.9	+0.024

Note: n of nonionic surfactant is much larger

Synthesis of polyethylene oxide

M. Hubbe

2. Type of surfactant

- Nonionic surfactants (PEO type) have lower CMC's than ionic ones for the same HC chain length and temperature: ~ an order of magnitude.
- Micelle formation of ionic surfactants is less favored because of the electrostatic repulsion between adjacent charged head groups.

3. Presence of electrolytes

- For ionic surfactants, addition of electrolytes(salts) lowers CMC.
- · Counter ions (of added salt) near the head groups reduce the electrostatic repulsion, and therefore micelle formation is more favored.

.1	5.6	3.1	1.5	0.7	
t alwa	ays the	case.	ion and		specieu
al co	mplex b	because	of variou	is compe	ting facto
	sed b t alw al co eper	sed by therm t always the al complex t ependence	sed by thermal agitat t always the case. al complex because of ependence is weak of	sed by thermal agitation and t always the case. al complex because of variou ependence is weak over a si	sed by thermal agitation and CMC is e t always the case. al complex because of various compe ependence is weak over a significant

- For nonionic surfactant (PEO type), CMC sharply↓ with T[↑] due to the progressive dehydration of the PEO groups (Fig.3-23 b) until a point (Cloud point) is reached where very large micelles are formed, producing visible turbidity.
- The transition occurring at cloud point is sharp like a macroscopic phase transition.

(a) sodium dodecyl sulfate;

(b) $CH_3(CH_2)_9(C_2H_4O)_5OH$

Energetics of micellization

Interactions involved in micelle formation

Monomer

- Hydrophobic effect (breaking H-bonds among H₂O molecules (1)
- Hydration of the hydrophilic groups (2)
- Entropy of monomers wrt. Micelle (2)

Micelle

- Electrostatic repulsion between adjacent ionic head groups (1)
- Significant entropy of hydrophobic chains (1),

where (1) favors micellzation, while (2) disfavors it.

 $mS \iff S_m$; K = (c\beta/m) / [c(1-\beta)]^m ; β = the fraction of total monomers in micelles ΔG^0 = - RT ln K

Per mole of monomer, $\Delta G^0 = - RT \ln K / m$

= - (RT/m) ln(cβ/m) + RT ln [c(1-β)] = RT [- { ln(cβ/m) }/m + ln {c(1-β)}]
At CMC, β~ 0 and the <u>1st term ~ 0</u> because of a large m. Therefore,
ΔG⁰ = RT ln(CMC)
dG = VdP - SdT, and ΔS⁰ = - (∂G⁰/∂T)_p
ΔS⁰ = - d(ΔG⁰)/dT = - RT d ln(CMC)/dT - R ln(CMC)
ΔH⁰ = ΔG⁰ + T ΔS⁰
= - RT² d ln(CMC)/dT
In general, CMC ↑ with T[↑], meaning that micellization process is an exothermic process.

- As stated earlier, it is not always the case (ref. Fig.3-2 a).
- This suggests that the entropy of a micelle is not small, i.e., the inner hydrophobic part has significant freedom (motion).

TABLE 8.3 Some Thermodynamic Properties for the Micellization Process at or

 Near 25°C for Various Surfactants

Surfactant	ΔG_{mic}^{0} (kJ mole ⁻¹)	ΔH_{mic}^{0} (kJ mole ⁻¹)	$\frac{\Delta S_{mic}^{0}}{(J \text{ K}^{-1} \text{ mole}^{-1})}$
Dodecyl pyridinium bromide	-21.0	-4.06	+ 56.9
Sodium dodecyl sulfate ^a	-21.9	+2.51	+81.9
N Dodecyl-N N-dimethyl glycine	-25.6	-5.86	+ 64.9
Polyoyyethylene(6) decanol	-27.3	+15.1	+142.0
N,N-Dimethyl dodecyl amine oxide	-25.4	7 (0 +7.11	+ 109.0

Source: Data from J. H. Fendler and E. J. Fendler, Catalysis in Micellar and Macromolecular Systems, Academic Press, New York, 1975. "Calculated in Example 8.4.

Solubilization

- Surfactant solutions above the CMC can solubilize otherwise insoluble organic material by incorporating it into the interior of micelles.
- Examples: the dye xylenol orange disolves only sparingly in pure water but gives a deep red solution with sodium dodecyl sulphate present above its CMC.
- Of practical importance in many applications;
 - 1) formulation of pharmaceutical and other water-insoluble ingredients,
 - 2) detergency (removal of oily soil),
 - 3) emulsion polymerization
 - 4) micellar catalysis

Emulsion polymerization: Harkins model

- Ex: polymerization of polystyrene
- Monomer distribution
 - A: monomer droplet
 - B: inside a micelle (solubilized)
 - C: in water (dissolved, isolated)
- Polymerization occurs within micelles size and shape (spherical bead) regulation
- Radical polymerization
- Initiators(R·) formed in water, combining with dissolved monomers to form RM· → transferred into micelles; the probability of diffusion into a micelle is much greater than that into a monomer droplet because of much larger surface areas of micelles.

Spreading

Adhesion and cohesion

Dupré equation

- Work of adshesion W_a = $\gamma_A + \gamma_B \gamma_{AB}$
- Work of cohesion $W_c = \gamma_A + \gamma_A \gamma_{AA} (= 0) = 2 \gamma_A$

Spreading of one liquid on another

- When a drop of an insoluble oil is placed on a clean water surface it may
 - 1) remain as a lens (non-spreading)
 - 2) spread as a thin film until it is uniformly distributed over the surface as a duplex film (a film thick enough for the two interface to be independent and posses characteristic surface tension)
 - 3) spread as a monolayer, leaving excess oil as lenses in equilibrium (Fig.4.17)
- <u>If the lens in Fig. 4.16 is very thin</u>, a contact area change of dA is accompanied by $dG = [(\gamma_0 + \gamma_{0W}) - \gamma_W] dA = -S dA$

Initial spreading coefficient S S = γ_W - (γ_O + γ_{OW}) : oil on water

- If dG < 0 or S > 0: spontaneous spreading
- If dG > 0 or S < 0 :contraction of the lens
- If dG = 0 or S = 0 : equilibrium

Table 4.6	Initial spreading coefficients (in mN m^{-1}) for liquids on water at 20°C ⁵	1
(By courtes	sy of Academic Press Inc.)	

Liquid	$\gamma_{WA} - (\gamma_{OA} + \gamma_{OW}) = S$	Conclusion
<i>n</i> -Hexadecane	72.8 - (30.0 + 52.1) = -9.3	will not spread on water
<i>n</i> -Octane	72.8 - (21.8 + 50.8) = +0.2	will just spread on pure water
n-Octanol	72.8 - (27.5 + 8.5) = +36.8	will spread against contamination

Spreading (cont'd)

• Substituting in the Dupré equation,

$$S = \gamma_{W} - (\gamma_{O} + \gamma_{OW}) = \gamma_{W} + \gamma_{O} - \gamma_{OW} - 2\gamma_{O} = W_{ow} - W_{oil}$$

Factors influencing spreading Impurities

• Impurities in water lowers γ_W more than it does γ_{OW} , especially if γ_{OW} is already low. ex: $S_{initial} = 0.2$ for n-octane on pure water $S_{initial} < 0$ for n-octane on contaminated water

Mutual saturation of one liquid with another

- The solubility of oil in water or vice versa at room temperature is small. However, the reduction in γ_W may be significant enough to affect spreading.
- Ex: Benzene on water

$$S_{initial} = 72.8 - (28.9 + 35.0) = 8.9 > 0$$
; spreading

- S_{final} = 62.4 (28.8 + 35.0) = -1.4 < 0 ; non-spreading
- Initial spreading stops, and the film may retract slightly to form very flat lens.
- Ex: n-hexanol on water $S_{initial} = 72.8 - (28.9 + 35.0) = 8.9 > 0$; spreading $S_{final} = 28.5 - (24.7 + 6.8) = -3.0 < 0$; non-spreading

The final state is shown in Fig. 4.17

Figure 4.17 Spreading of *n*-hexanol on a water surface

Monomolecular Film

Insoluble (Langmuir) monolayer

- Surfactant molecules adsorb at the surface, resulting in the reduction of the surface tension.
- $\gamma_0 \gamma = \pi$, where π is the spreading pressure
- The spreading pressure can be measured using a surface balance (Fig. 4.18).
- The surfactant molecules form a monolayer film.

Physical states of monomolecular films

- The monolayers can be roughly classified as
- 1. Condensed (solid) films
- Closely packed film with molecules steeply oriented towards the surface.

2. Liquid states

- Films are still coherent but occupy a much larger area than condensed films.
- It is like a highly compressible liquid, in this sense there is no real 3D equivalent.
- There exist a number of different expanded films, the most important being the liquid-expanded state.

3. 2D Gaseous films

- Molecules are separate and move about the surface independently.
- Surface pressure is exerted on the 2D barrier by a series of collisions

Gaseous films

- Molecules in a gaseous film behaves like a 2D gas.
- Equation of state:

 $\Gamma_2 = -c_2 / RT (d\gamma / dc_2)$, where Γ_2 is in mole/unit surface area. $\pi = \gamma_0 - \gamma = bc_2$ at low concentration, and $d\gamma / dc_2 = -b = -\pi/c_2$. $\Gamma_2 = -c_2 / RT (-\pi/c_2) = \pi / RT$, $\Gamma_2 = n_2 (mole) / \mathcal{A} = N_2 (molecules) / \mathcal{A} N_A = \pi / RT = \pi / RT$ $\mathcal{A} N_A / N_2 = RT / \pi \rightarrow \mathcal{A} / N_2 = kT / \pi$

Let A be the average surface area taken by a molecule, $A = A / N_2$

 $\pi \mathbf{A} = \mathbf{kT}$

- It is just a 2D ideal gas law.
- As for 3D van der Waals equation,
- $(\pi \pi_0)$ $(A A_0) = kT$ is more appropriate for real gases.
- Ex: For CTAB (cetyl trimethyl ammonium bromide) $C_{16}H_{33}N(CH_3)_3^+Br^-$ at water- air interface, $\pi A = kT$ approximately holds, for
- The electrostatic repulsion between the ionic head group is nearly compensated by the attractive force between the alkyl chains.
- At water-oil interface, π is much larger for a given A because the repulsion $\mathbf{F} = \mathbf{q}^2 / 4\pi \epsilon \mathbf{r}$ is much stronger due to a smaller dielectric constant $\epsilon_r (= \epsilon / \epsilon_0)$ of the oil.

π – A curves for CTAB at
Water-air and water-oil
Interfaces at 20 °C

Condensed films

- Higher straight chain fatty acids such as stearic acid $CH_3(CH_2)_{16}COOH$ and palmitic acid $CH_3(CH_2)_{14}COOH$ are examples of condensed films.
- The cohesion (attractive interaction) is strong for these molecules, thus forming clusters and islands (Fig. 4.23).
- Because of this strong cohering tendency the surface pressure remains very low as the film is compressed and then rises rapidly when the molecules become tightly packed together.

Ex: π – A curves for stearic acid spread on HCl solution at 20 °C (bottom Fig)

- At very low pressure molecular orientation is random and tilted (a)
- In the horizontal region the molecules are lifted up (b). The compressibility is large (easily compressible) and the pressure rise is very small.
- Initial pressure rise at 0.25 $nm^2 \rightarrow initial packing of end groups$.
- π A curve becomes very steep at 0.205 nm² \rightarrow more efficient packing by staggering and interlocking of the end groups.
- Limiting surface are = 0.20-0.22 nm² for straight chain fatty acid irrespective of the chain length.
- This value is close to the cross-section of crystalline SA measured by X-ray diffraction.
- Further compression beyond this limit will eventually lead to collapse or buckling of the film. HYNYYY

a) expanded

b) partially compressed c) compressed

Various forms of film deformation beyond the elastic limit.

Cross-sectional areas of various surfactant molecules measures from the $\pi - A$ curves

Expanded films

Oleicacid CH₃(CH₂)₇CH=CH(CH₂)₇COOH

- Oleicacid gives a much more expanded film than the corresponding saturated acid, stearic acid.
- Because of the double bond there is less cohesion between the hydrocarbon chains than the stearic acid and a greater affinity for the aqueous surface.
- So π is larger for a given A .

- The π A curve for myristicacid, CH₃(CH₂)₁₂COOH, spread on 0.1 M HCl at 14 °C (bottom Fig.) shows its overall resemblance to the p-V curve of a 3D real gas.
- But the liquid expanded state has no 3D equivalent.

Factors influencing the physical state of monomolecular films

- Lateral cohesion between the end groups(attraction)
- Cohesion depends on the geometry and orientation of the HC chain
- Affinity for the aqueous phase (attraction)
- A longer HC chain has a higher tendency for cohesion
- The transition temperature is lowered by ~ 5- 8 °C by adding one more CH_2 group.

The following factors will favor the formation of an expanded films;

- 1. Bulky head groups (ex: -SO₄, PO₄) prevent efficient packing and, hence, maximum cohesion between the HC chains.
- 2. More than one polar head groups- e.g. unsaturated fatty acids, hydroxy acids.
- 3. More than one HC chain oriented in different directionsn for the polar part of the molecule- e.g. esters, glycerides

CH,OC(CH,)

CH,OC(CH,) CH

triiglyceride

- 4. Bent HC chains gives very expanded films.
- 5. Branched HC chains.
- 6. The nature of the substrates.
- PH is very important for ionizable monolayers.
- The repulsion between ionized COO⁻ groups favors the formation of gaseous or liquid-expanded films at low T.
- Dissolved electrolytes have a profound effect on the state of the film;
 Ex: Ca2+ ions form insoluble calcium soaps with fatty acid films (unless the pH is very low), thus making the film more condensed.

Film deposition

Langmuir-Blodgett film

Controlling parameters: pH, surface pressure etc.