Adsorption & desorption at solid surfaces

Reading: Shaw, ch. 5

I. Adsorption: basic concepts

1. Physisorption vs. Chemisorption

Physisorption

- Van der Waals interaction
- Small adsorption energy: ≤ 20 kJ/mole
- Similar to condensation
- Multilayer adsorption possible
- No charge transfer
- Substrate non-specific

Chemisorption

- Chemical bonding
- Large adsorption energy: ≥ 200 kJ/mole
- Charge transfer : work function change
- Limited to a monolayer
- Substrate specific
- Gas specific

Synoptic table 25.1* Maximum observed enthalpies of physisorption

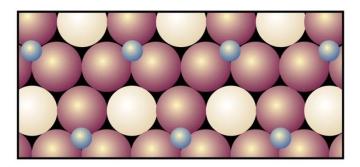
Adsorbate	$\Delta_{ad} H^{\Theta}/(kJ mol^{-1})$		
CH_4	-21		
H_2	10		
H ₂ O	-59		
N ₂	-21		

Synoptic table 25.2^{*} Enthalpies of chemisorption, $\Delta_{ad}H^{\Theta}/(kJ \text{ mol}^{-1})$

Adsorbate	Adsorbent (substrate)			
	Cr	Fe	Ni	
CH ₄	-427	-285	-243	
CO		-192		
H ₂	-188	-134		
NH ₃		-188	-155	

Terminology

- Adsorption site density
 - $N_s = \# \text{ of sites } / \text{cm}^2 \sim 10^{15} / \text{cm}^2$
- Coverage

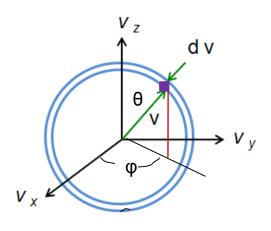

fractional coverage $\theta = N_s/N$ saturation coverage : $\theta_s = 1$

• Wall collision rate Z_w

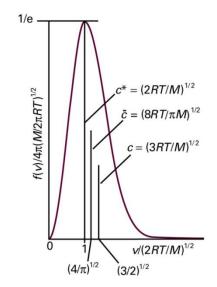
$$\begin{split} &Z_w = \text{\# molecules striking a surface /cm^2. s} \\ &Z_w = P / (2\pi \text{ mkT})^{1/2} \sim 10^{15} \text{ molecules /cm^2. s} \\ & @ 10^{-6} \text{ Torr and } 298 \text{ K} \\ &1 \text{ L (Langmuir)} = 10^{-6} \text{ Torr.s of gas exposure.} \end{split}$$

 $Z_{w} = \int \int \mathcal{N} f(v) v \cos \theta dS dv d\Omega / dS$

• Monolayer completion time ~ 1sec @ 10⁻⁶ Torr



Another way to obtain f(v)dv

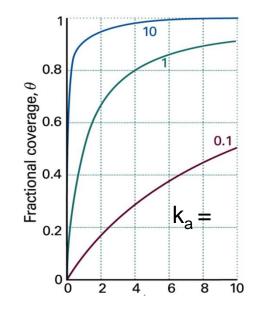

- Consider 1D velocity distribution $f_x(v_x)dv_x$
- $\epsilon = \frac{1}{2} mv_x^2$ is non-degenerate, so g =1 for all v_x
- According to the Boltzmann distribution law, $f_x(v_x)dv_{\infty} = (m/2\pi kT)^{1/2} \exp(-\frac{1}{2}mv_x^2/kT) dv_x$ cf: $\int -exp(-\frac{1}{2}mv_x^2/kT) dv_x = (2\pi kT/m)^{1/2}$
- $< v_x > = (2kT/\pi m)^{\frac{1}{2}}$
- f_x(v_x), f_y(v_y), and f_z(v_z) are independent with one another and have the same function.
- $f_x(v_x) f_y(v_y) f_z(v_z) dv_x dv_y dv_z$ = $(m/2\pi kT)^{3/2} \exp \{-\frac{1}{2} m(v_x^2 + v_y^2 + v_z^2)/kT\} dv_x dv_y dv_z$
- Expressing it in polar coordinate (v,θ,φ), f (v,θ,φ) dvdθdφ = (m/2πkT)^{3/2} exp(-½ mv²)/kT) v² dv sinθ dθ dφ
 Integrating over dθ and dφ,

f (v) dv = 4π (m/ $2\pi kT$)^{3/2} exp(- $\frac{1}{2}$ mv²)/kT) v² dv = 4π (M / $2\pi RT$)^{3/2} exp(- $\frac{1}{2}$ mv²)/kT) v² dv ; text eq. (20.4)

- Mean speed $\bar{c} = \langle v \rangle = \int_{0,\infty} v f(v) dv = (8RT/\pi M)^{1/2}$
- Most probable speed $c^* = (2RT/M)^{\frac{1}{2}}$; df /dv | $_{v=c^*} = 0$
- Root mean square speed $c_{rms} = (\langle v^2 \rangle)^{\frac{1}{2}} = (3RT/M)^{\frac{1}{2}}$

velocity space

2. Kinetics of Adsorption

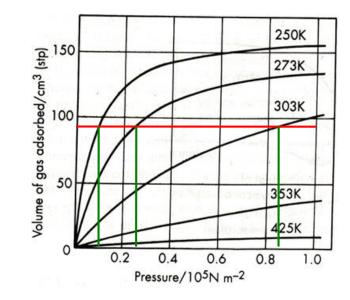

Langmuir model assumes that

- Uniform adsorption site
- Adsorption energy independent of θ
- No surface diffusion

M (g)+ * → M(ad) : non-dissociative dθ/dt = $k_a(1 - \theta)$: $k_a = Z_w s_0 / N_s = k_a p$ s_0 = initial sticking probability $s(\theta) = s_0 (1 - \theta)$

$$\theta(t) = 1 - \exp(-k_a t)$$

A₂ +2 * → 2 A(ad) : dissociative adsorption • dθ/dt = k_a(1- θ)² : k_a = 2 Z_w s₀/ N_s s(θ) = s₀ (1- θ)² θ(t) = k_at / (1+ k_at)

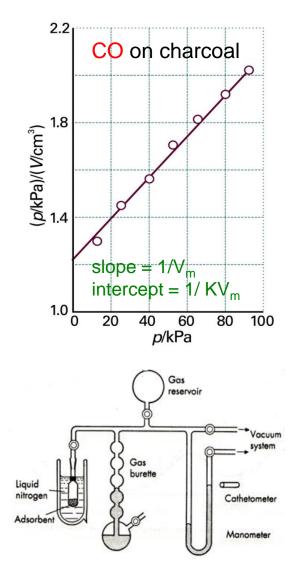

Time (k_a t)

3. Reversible adsorption

Adsorption-desorption equilibrium $M(g) + * \leftrightarrow M(ad)$

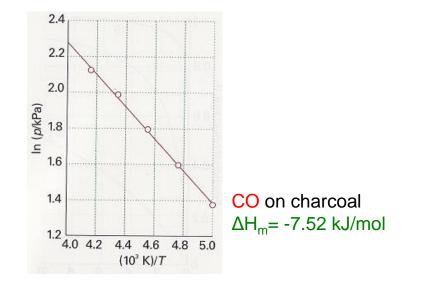
- $d\theta/dt = k_a P(1-\theta) k_d \theta$ at equilibrium, $d\theta/dt = 0$.
- The desorption rate constant $k_d = k_d^0 \exp(-E_d/RT)$:
- At equilibrium, $d\theta/dt = 0$.
 - $\theta = \mathsf{K}(\mathsf{T}) \; \mathsf{p} / \{\mathsf{1} + \mathsf{K}(\mathsf{T}) \; \mathsf{p} \; , \;$
- where $K = k_a / k_d$: equilibrium constant.
- As $p \rightarrow \infty$, $\theta \rightarrow 1$
- θ -P plot at constant T is called Langmuir isotherm.
- As seen in the Fig., the coverage θ depends more sensitively on T than on p.

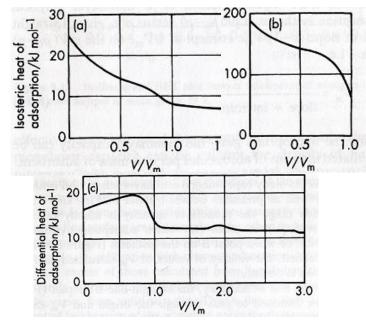
NH₃/ charcoal


4. Measurement of adsorption isotherm

Volumetric measurement

 $\begin{aligned} \theta &= K(T)p \ / \ \{1 + K(T) \ p\} \\ \theta &= p \ / V_m \end{aligned} \ \ \ measured as a volume change, where V is the volume of gas adsorbed and V_m is the saturation volume. \end{aligned}$


V/ $V_m = Kp /(1+Kp)$, P/V = (1+Kp)/K $V_m = p/V_m + 1/KV_m$

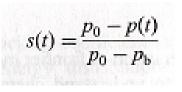

p/V vs. p plot gives a straight line. Slope = $1/V_m$ and intercept = $1/KV_m$

Isosteric enthalpy(heat) of adsorption

- dG = Vdp SdT, and d(Δ G) = Δ Vdp Δ S dT for any change
- At equilibrium, $\Delta V dp \Delta S dT = 0$.
- $\Delta V = V_{ad} V_g \sim nRT/p$
- $(\partial p / \partial T)_{\theta} = \Delta S / \Delta V = (\Delta H / T) / (nRT/p) = p \Delta H / nRT^2$ at constant θ .
- d lnp = ($\Delta H_m/R$) d(1/T) \rightarrow The slope of (ln p) (1/T) plot gives $\Delta H_m/R$
- In genera, Δh_{ad} is coverage-dependent because of
 - 1) Heterogeneity of the adsorption sites
 - 2) Lateral interaction between adjacent adsorbates

- a) Physisorbed N₂ on rutile TiO₂ at 85 K
- b) Chemisorbed H on W
- c) Physisorbed Kr on graphized carbon black

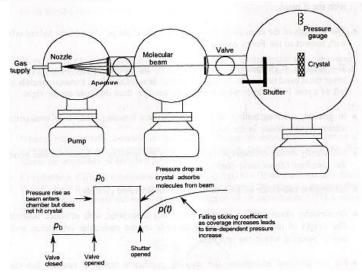
Sticking probability


• Sticking probability

s = # molecules adsorbed/ # molecules impinging on a surface

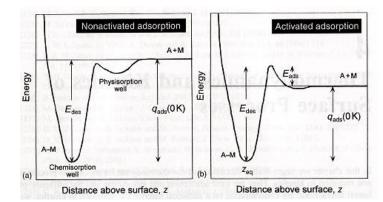
• Molecular beam method, in which the partial pressure change is monitored with a QMS.

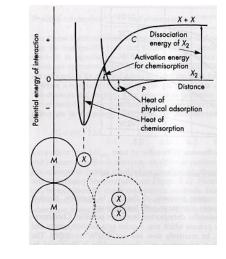
			•	the second se	
Gas	Surface	S(0)	Gas	Surface	S(0)
H ₂	Ni(100)	0.06	N ₂	W(320)	0.7
H ₂	Ni(111)	0.02	N ₂	W(110)	$< 3 \times 10^{-3}$
H ₂	Pt(110)	0.2	Ga	GaAs(100)-B	1.0
H ₂	Si(100)	< 10 ⁻⁴	As ₄	GaAs(100)-B	< 10 ⁻³
co	Pt(111)	0.67	As ₄	GaAs(100)-A	0.5

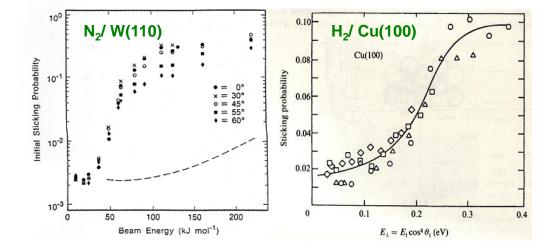


Data taken from Morris et al. [1984] and Joyce and Foxton [1984].

Factors influencing s₀ in chemisorption

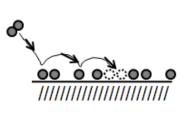

- Gas- surface combination
- Efficiency of energy transfer in gas-surface collisions
- Surface orientation of the surface for a given single crystal material
- Presence of an energy barrier for dissociative adsorption: activated adsorption

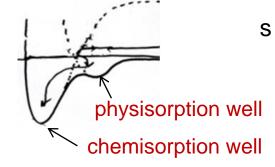



5. Activated adsorption

 $\rm X_2~(g) \rightarrow 2~\rm X_{ad}$

- Important process in heterogeneous catalysis
- $\ensuremath{\cdot}$ Very small s_0 due to the presence of an adsorption barrier
- A fast N₂ can overcome the barrier to directly populate the atomic state.
- A large kinetic energy dependence of s₀

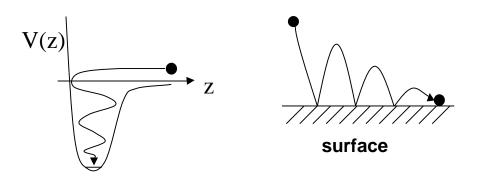




6. Precursor-controlled adsorption

- Marked deviation from Langmuir adsorption Langmuir adsorption; s = s₀ (1- θ)²
- Coverage-insensitive s.
- Decrease in s with increasing Ts: re-evaporation of the precursor state.

 $N_2(g) \leftrightarrow N_2(ad) \rightarrow 2 \; N(ad)$


- Trapping in the physisorption well
- Precursor hopping on the surface to find an empty site → increase in s
- Re-evaporation of the precursor due to a finite surface lifetime τ ; $\tau = \tau_0 \exp(-E_d/RT)$

 $N_2(g) \rightarrow 2 N_{ad}$ 0.1 N₂/ W(100) 5= 300 K 0.600000000 N₂/ W(100) S T_s= 300 K[°] 433 664 773

Surface coverage θ

II. Adsorption dynamics

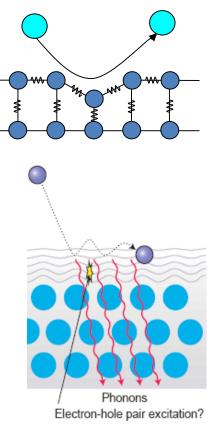
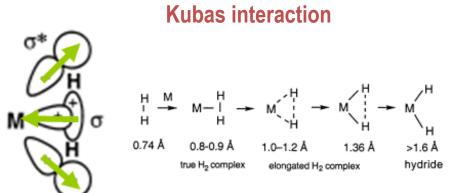
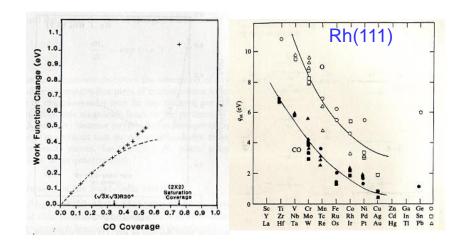

- The outcome of the gas-surface collisions;
 - 1) Trapping: becoming a bound state after the 1st collision
 - 2) Direct reflection to the gas phase
- The trapping probability is determined by the amount of the energy transfer to the surface.
- Energy transfer occurs via multiphonon excitations.

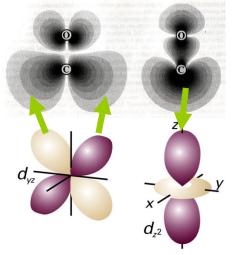
TABLE 5.1 Some Typical Values of the Initial Sticking Probab	ility	at	300	к
--	-------	----	-----	---


Gas	Surface	S(0)	Gas	Surface	S(0)
H ₂	Ni(100)	0.06	N ₂	W(320)	0.7
H ₂	Ni(111)	0.02	N ₂	W(110)	$< 3 \times 10^{-3}$
H ₂	Pt(110)	0.2	Ga	GaAs(100)-B	1.0
H ₂	Si(100)	< 10 ⁻⁴	As ₄	GaAs(100)-B	< 10 ⁻³
co	Pt(111)	0.67	As ₄	GaAs(100)-A	0.5

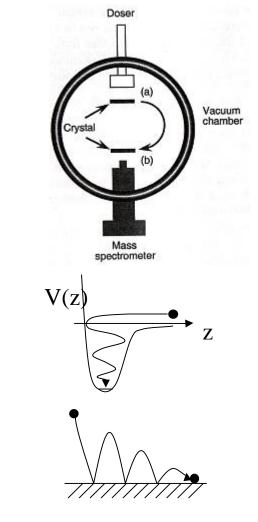
Data taken from Morris et al. [1984] and Joyce and Foxton [1984].

Chemisorption bonding of H₂ and CO(NO)


- Charge transfer : work function change
- e⁻ donation + backdonation
- Orbital symmetry
- Transition metal : d-band metal
- Noble metal: sp-band metal
- Heat of adsorption: bond strength
- Dissociation
- Activated adsorption



Heat of adsorption of CO


III. Desorption

- Reverse process of adsorption
- Thermal desorption by phonon anihilation
- Temperature programmed desorption (TPD) information available: surface coverage, desorption kinetics, adsorption energy,

Desorption rate

 $d\theta/dt = k_d \theta^n$ $n = 0 : 0^{th}$ -order desorption $n = 1 : 1^{th}$ -order desorption : M(ad) \rightarrow M(g) $n = 2 : 2^{th}$ -order desorption : 2 A(ad) \rightarrow A₂ (g)

 $k_d = k_d^0 \exp(-E_{des}/RT)$ T = T₀ (1+ β t), where the heating rate β = 0.1~ 10 K/s

surface

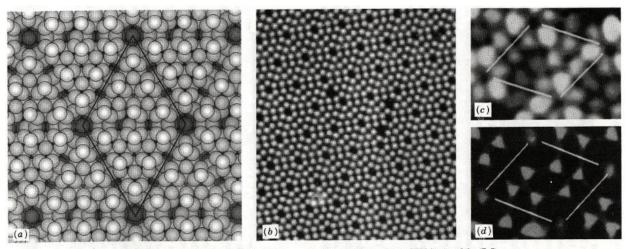


Figure 2.47 (a) A schematic of the (7x7) reconstruction of Si(111). (b) An STM image of the (7x7) surface. (c), (d) Images of the dangling bonds in the (1x1) surface. (From Trump et al. [1988].)

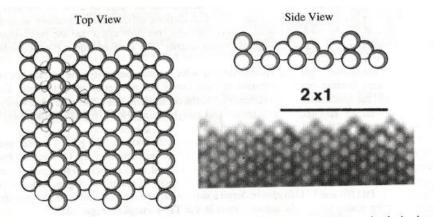
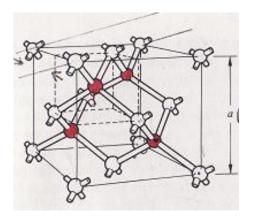



Figure 2.52 A schematic of the (2x1) reconstructon of Au(110) and a TEM image that looks down the surface. (The TEM image is from Marks and Smith [1983]. Reprinted with permission from *Nature* 303, 316 (1983). © 1983 McMillan Magazines Limited.)

1. Example of TPD spectra: H/Si(100)

Unreconstructed Si(100)

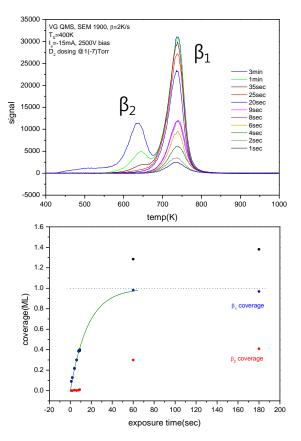
Side view

Si

Top view

(a)

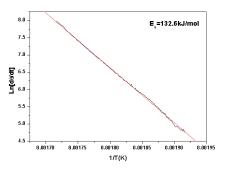
(b)

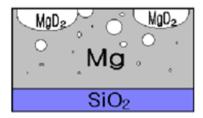

saturation β_1 coverage = 6.683X10¹⁴ H atoms/cm²

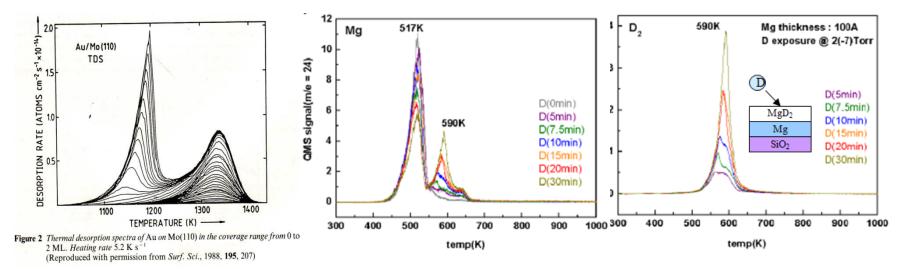
 β_1 state

monohydride (1 ML) (2x1)

β₂ state dihydride (1¹/₃ ML) (3x1)

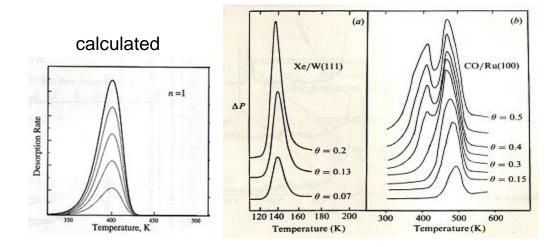

D atom beam dosing




2. Desorption kinetics

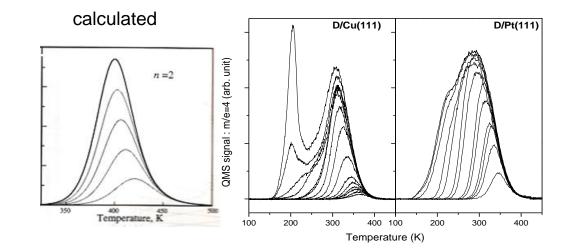
A. 0th –order desorption

- $d\theta/dt = k_d = k_d^0 \exp(-E_{des}/RT)$
- For a multilayer $\theta = 1$.
- Exponential rate increase with $T \rightarrow$ obtain E_{des}



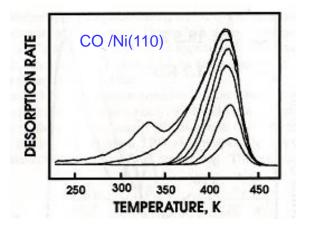
B. 1th –order desorption

- $d\theta/dt = k_d^0 \exp(-E_{des}/RT) \theta$
- The peak temperature is coverage-independent
- Asymmetric peak shape

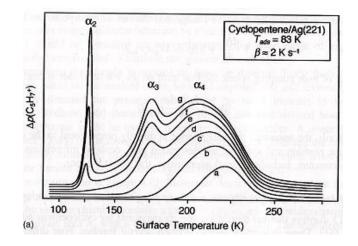

$$E_{\rm des} = RT_{\rm p} \left[\ln \left(\frac{AT_{\rm p}}{\beta} \right) - 3.46 \right]$$

~ 31 kT_p

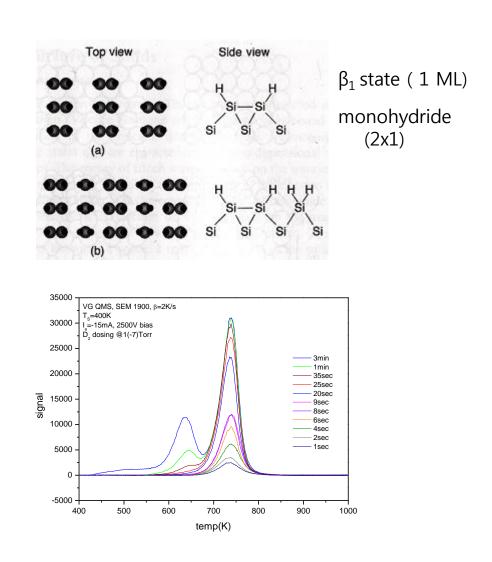
Ex: T_p = 300 \rightarrow E_{des} = 0.81 eV.



C. 2th –order desorption


- $d\theta/dt = k_d^0 \exp(-E_{des}/RT) \theta$
- Peak shift to a lower T with increasing coverage
- Almost-symmetric peak

- 3. Deviation from simple kinetic theory
 - 1) Adsorbate-adsorbate interaction
 - Repulsive or attractive interaction.
 - E_{des} is coverage-dependent.
 - Repulsive interaction \rightarrow
 - T_p shifts to a lower T with increasing θ .



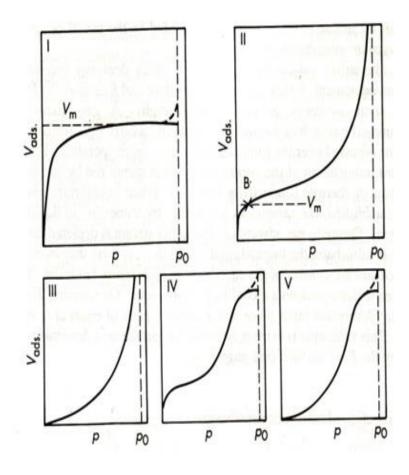
2) Pre-pairing of atoms

- 2 A(ad) \rightarrow A(ad)-A(ad) \rightarrow A₂ (g)
- No direct bonding between A(ad)'s.
- Occupy the adjacent sites.
- 2 H(ad)/ Si(100) \rightarrow H(ad)-H(ad) (pair) \rightarrow H₂ (g).
- No T_p shift with coverage.
- 2 H(ad) occupy the Si dimer sites.

IV. Adsorption isotherms

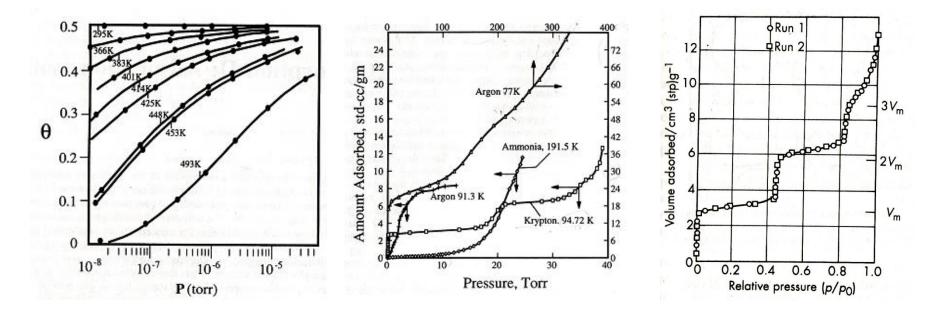
1. Brunner clasification

Type I: Langmuir adsorption


Type II: monolayer + multilayer

Type III: multilayer adsorption

Type IV: Type II


Type V: Type III on a porous adsorbent

- Finite pore volume limits the max. V_{ads}.
- Type II & IV: $\Delta H_{des} >> \Delta H_{vap}$
- Type III & V: $\Delta H_{des} \sim \Delta H_{vap}$

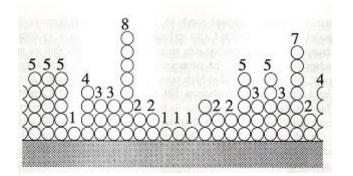
 p_0 = saturation vapor pressure

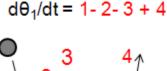
Examples of adsorption isotherms

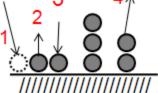
CO/Pd(111)

Ar, NH3 /carbon black

Kr /carbon black


* carbon black graphitized at 3000 K


2. Multilayer physisorption


BET isotherm: Brunnauer, Emmett, Teller

- Langmuir adsorption extended to allow multilayer adsorption
- Equilibrium maintained between the adjacent layers
- ΔH^{o}_{ads} for the first layer and ΔH^{o}_{vap} for the multilayers
- used for surface area measurements.

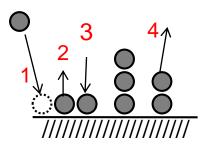
 $\begin{array}{ll} \mathsf{M}(g) + & \stackrel{*}{\longrightarrow} & \bigoplus \mathsf{M}_1(\mathsf{ad}) \\ \mathsf{M}(g) + \mathsf{M}_1(\mathsf{ad}) & \leftrightarrow \mathsf{M}_2(\mathsf{ad}) \\ & & \\ & & \\ \mathsf{M}(g) + \mathsf{M}_{\mathsf{n-1}}(\mathsf{ad}) \leftrightarrow \mathsf{M}_\mathsf{n}(\mathsf{ad}) \end{array}$

BET equation

- Extension of Langmuir equation beyond the 1st layer.
- Equilibrium between adjacent layers
- The rate of coverage change for each layer is zero.
- The 1st layer may be chemisorption, but the 2nd layer and beyond are always physisorption \rightarrow Therefore, different k_a and k_d values may be involved.
- At equilibrium

$$d\theta_0/dt = -k_a p \theta_0 + k_d \theta_1 = 0$$

$$d\theta_1/dt = k_a p \theta_0 - k_d \theta_1 - k'_a p \theta_1 + k'_d \theta_2 = 0$$


$$d\theta_2/dt = k'_a p \theta_1 - k'_d \theta_2 - k'_a p \theta_2 + k'_d \theta_3 = 0$$

.

$$d\theta_{n-1}/dt = k'_a p \ \theta_{n-2} - k'_d \ \theta_{n-1} - k'_a \ p\theta_{n-1} + k'_d \ \theta_n = 0$$

- $k_a = Z_w s_0$, $k_d = v \exp(-\Delta H_{des}/RT)$ for the 1st layer • $k'_a = Z_w s'_0$, $k'_d = v' \exp(-\Delta H_{eva}/RT)$ for the 2nd layer and beyond.
- For miultilayer adsorption $s_0 \sim s'_0$ and $v \sim v'$. Then, $k_a \sim k'_a$.
- But E_{des} can be much larger than E'_{des} , hence k_d much smaller than k'_d .

 $d\theta_1/dt = 1 - 2 - 3 + 4$

• Let
$$k_a/k_d = K$$
, $k'_a/k'_d = K'$, and
 $c = K / K' = (k_a/k_d) / (k'_a/k'_d) \sim k'_d/k_d = \exp(\Delta h_{des} - \Delta H_{vap}) / RT$

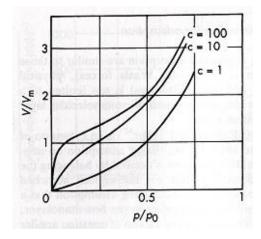
$$\theta_{1} = (k_{a}/k_{d}) p \theta_{0} = \mathbf{K}p\theta_{0} = c\mathbf{K}'p\theta_{0}$$

$$\theta_{2} = [(k_{d} + k'_{a}p) \theta_{1} - k_{a}p \theta_{0}] /k'_{d} = (1/c + K'p) \theta_{1} - K'p \theta_{0} = c(K'p)^{2} \theta_{0}$$

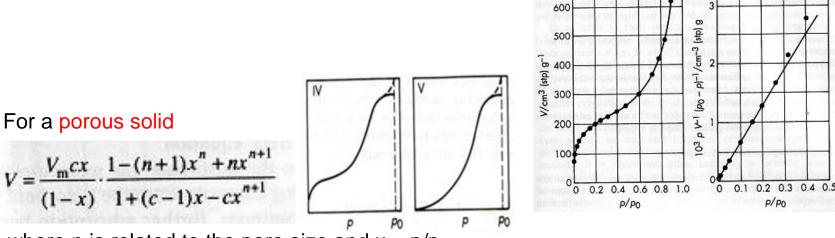
$$\theta_{3} = [(k'_{d} + k'_{a}p) \theta_{2} - k'_{a}p \theta_{1}] /k'_{d} = (1 + K'p) \theta_{2} - K'p \theta_{1} = c(K'p)^{3} \theta_{0}$$

 $\theta_{n} = (1 + K'p) \ \theta_{n-1} - K'p \ \theta_{n-2} = c(K'p)^{n-1} \ \theta_{0} + (K'p)_{n}\theta_{0} - c(K'p)^{n-1} \ \theta_{0} = c(K'p)^{n} \ \theta_{0}$

$$\begin{array}{l} (1) \ \theta_0 + \theta_1 + \dots + \theta_n \ (n \to \infty) = 1 \\ \to \ \theta_0 + c K'p \ [1 + Kp + (K'p)^{2} + (K'p)^3 + \dots] \ \theta_0 = 1 \to \ \theta_0 \ [1 + c K'p \ /(1 - K'p)] = 1 \\ \to \ \theta_0 = 1/[1 + c K'p \ /(1 - K'p)] = (1 - K'p) \ / \ [1 + (c - 1)K'p] \\ (2) \ V/V_m = \ \theta_1 + 2 \ \theta_2 \ \dots + n \ \theta_n \ = c[\ K'p + 2(K'p)^2 + 3(K'p)^3 + \dots] \ \theta_0 \\ = (1 - K'p) \ c K'p \ / \ [1 + (c - 1)K'p] \ (1 - K'p)^2 \\ cf: \ 1 + x + x^2 + \dots = d(\ x + x^2 + x^3 \dots)/dx = d[x/(1 - x)]/dx = 1/(1 - x)^2 \end{array}$$


- When p = p₀ (saturation vapor pressure), adsorption and desorption can take place at all sites. Therefore, k'_a p₀ (θ₀ + θ₁+ ... + θ_n) = k'_d (θ₀ + θ₁+ ... + θ_n) → k'_a p₀ = k'_d → K' = 1/p₀ and K' p = p/p₀ (3)
 V/V_m = (1- K'p) cK'p / [1+(c-1)K'p] (1-K'p)² from (2) and (3)
 - $= c (p/p_0) / [1+(c-1)p/p_0]] (1-p/p_0) = V/V_m = cp p_0 / [p_0+(c-1)p] (p_0-p)$
- Rearranging, $[p_0+(c-1)p]/c p_0 V_m = p/V(p_0-p) \rightarrow p/V(p_0-p) = 1/cV_m + [(c-1)/cV_m] (p/p_0); y = a + bx type$

 $p/V(p_0-p)$ vs. p/p_0 plot gives a straight line as shown in the Figure.


$$\frac{p}{V(p_0 - p)} = \frac{1}{V_{\rm m}c} + \frac{(c - 1)}{V_{\rm m}c} \frac{p}{p_0}$$

 V_m = monolayer capacity c = exp ($\Delta H_{des} - \Delta H_{vap}$) /RT

Intercept =
$$1/cV_m$$

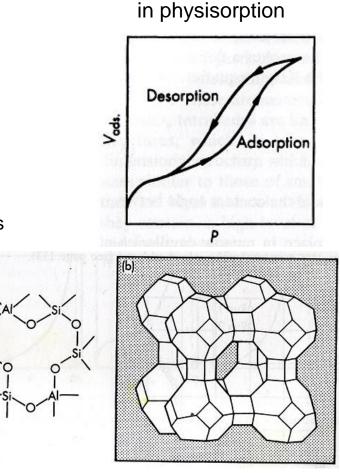
 $V_m = \frac{1}{\text{slope + intercept}}$

 N_2 / silica gel @ 77 K

, where n is related to the pore size and $x = p/p_0$

Capillary Condensation

Porosity may result from


- 1) Gas evolution during the formation of the solid.
- 2) Fibrous structure.
- 3) Compaction of particulate solid.

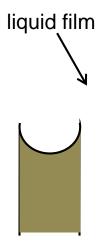
Representative example: Zeolites

- Natural or synthetic materials
- SiO₄ and AlO₄ tetrahedra are linked by sharing O atoms
- 3D structure containing regular channels and cavties of sizes similar to those of small and medium –sized molecules.

Classification of pores

- Micropore s: width < 2nm
- Mwsopores: width = 2nm ~ 50 nm
- Maropores: width > 50 nm

Hysteresis loop


Figure 5.7 Zeolite structure. (a) 6-ring containing two aluminium and four silicon tetrahedral centres. (b) Zeolite A structure. Each of the eight sodalite units depicted contains 24 aluminium or silicon tetrahedral centres arranged to give six 4-rings plus eight 6-rings

(a)

Capillary Condensation

- Kelvin equation: RT In $p_r/p_0 = 2\gamma M/\rho r = 2\gamma V_m/r$ for a convex liquid-vapor interface
- For a liquid film inside a pore of radius r, which has a concave interface

RT ln $p_r/p_0 = -2\gamma V_m \cos \theta/r$

