Electrochemical Energy Engineering, 2019

4. Electrode Processes

Learning subject

- 1. Working electrode
- 2. Reference electrode
- 3. Polarization

Learning objective

- 1. Understanding the principle of electrode potential
- 2. To select reference electrode
- 3. Understanding three kind of polarizations

1. Working electrode

Electrodes

Working electrode(WE): electrode of interest

Reference electrode(RE): second electrode, measure potential of WE with respect to RE

Electrode potential $E = E_{work} - E_{ref}$

Reference electrodes

SHE (standard hydrogen electrode) or NHE(normal hydrogen electrode): universally accepted standard

 $H^+(aq, a=1) + e^- = 1/2H_2(g, 10^5 \text{ Pa}) E = 0 \text{ V}$

Electrode potential

<u>Controlling potential of the working electrode with respect to the reference</u> \rightarrow controlling the energy of the electrons within the working electrode

More negitive potential \rightarrow energy of electrons is raised \rightarrow reach a level to occupy vacant states (LUMO) on species in the electrolyte \rightarrow flow of electrons from electrode to solution (a reduction current)

More positive potential \rightarrow electron flow from solution (HOMO) to electrode (oxidation current)

Applying potential from its equilibrium (or its zero-current)

Figure) A.J. Bard, L. R. Faulkner, Electrochemical Methods, Wiley, 2001.

- Potential moved from OCV toward more negative potential: reduced more positive E^0 first

- Potential moved from OCV toward more positive potential: oxidized more negative E^0 first

- consider slow kinetics: slow hydrogen evolution in Hg \rightarrow Cr³⁺ reduction first in Figure (c)

The role of working electrode

Working electrode can act;

- (i) as only a source (for reduction) or a sink (for oxidation) of electrons transferred to or from species in electrolyte (e.g., C, Au, Pt, Hg) or can
- (ii) take part in the electrode reaction, as in dissolution of a metal M (Zn \rightarrow Zn²⁺ + 2e⁻)

Faradaic and nonfaradaic electrode processes

<u>Faradaic process</u>: charges (e.g., electrons) are transferrred across the electrodeelectrolyte interface. Electron transfer causes oxidation and reduction to occur: governed by Faraday's law (the amount of chemical reaction caused by the flow of current is proportional to the amount of electricity passed) \rightarrow "charge transfer electrode"

<u>Nonfaradaic process</u>: no charge transfer reactions occur because of thermodynamically and kinetically unfavorable. Adsorption/desorption can occur. The structure of the electrode-solution interface can change with changing potential or solution composition. Transiently external current can flow.

Both faradaic and nonfaradaic processes occur when electrode reactions take place

Nonfaradaic processes and the electrode-solution interface

Capacitance and charge of an electrode

- Interface = capacitor (two metal sheets separated by a dielectric material) q/E = C

q: charge stored on the capacitor (C, coulomb)

E: potential across the capacitor (V), C: capacitance (F, farad)

- During this charging process, a current ("charging current") will flow

- 2 V battery across 10 µF capacitor

 \rightarrow current will flow until 20µC accumulated

Figure 1.2.1 (*a*) A capacitor. (*b*) Charging a capacitor with a battery.

Figure) A.J. Bard, L. R. Faulkner, Electrochemical Methods, Wiley, 2001.

Electrode-solution interface: $q^{M} = -q^{S}$ "electrical double layer" q^{M} : very thin layer (<0.1 Å), charge density ($\mu C/cm^{2}$) $\sigma^{M} = q^{M}/A$ Typical double-layer capacitance (C_{d}): 10 ~ 40 $\mu F/cm^{2}$

Electrical double layer

Double layer: several layers Inner layer (compact, Helmholtz, Stern): solvent, specifically adsorbed species Outer Helmholtz plane (OHP): solvated ions Diffusion layer: extends from OHP to the bulk (~100 Å in >10⁻² M)

Figure 1.2.4 Potential profile across the double-layer region in the absence of specific adsorption of ions. The variable ϕ , called the *inner potential*, is discussed in detail in Section 2.2. A more quantitative representation of this profile is shown in Figure 12.3.6.

Figure 1.2.3 Proposed model of the double-layer region under conditions where anions are specifically adsorbed.

Applying potential to electrode:

 \rightarrow current for charging the double layer capacitance

e.g.,) R_s = 1 $\Omega,~C_d$ = 20 $\mu F,~\tau$ = 20 μsec \rightarrow double layer charging is 95 % complete in 60 μsec

Double layer charging process: "non-faradaic process"

Semiconductor electrode

Semiconductor/electrolyte \rightarrow space charge region due to space charge capacity, C_{sc} , 0.001 ~ 1 μ Fcm⁻², (cf; $C_{dl} = 10 \sim 100 \mu$ Fcm⁻²) \rightarrow band bending

when E_F of SC lies above that in electrolyte \rightarrow electron flow from SC (positively charged) to electrolyte (negatively charged) \rightarrow bent upward by applying potential of $\phi_{bulk} = \phi_{surface}$, band bending & space charge region disappear \rightarrow "flat band potential (ϕ_{fb} or E_{fb})"

space charge capacitance $C_{sc} \rightarrow Mott$ -Schottly equation

$$1/C_{sc}^{2} = (2/e\varepsilon \varepsilon_0 N)^{1/2} (-\Delta \phi - kT/e)$$

ε: dielectric constant, N: donor or acceptor densities, e: quantity of charge, $-\Delta \phi = E - E_{fb}$

A plot of $1/C_{sc}^{2}$ vs. potential E should be linear $\rightarrow E_{fb}$, doping level N

p-type

2. Reference electrode

Electrode potential $E = E_{work} - E_{ref}$

Reference electrodes

SHE (standard hydrogen electrode) or NHE(normal hydrogen electrode): universally accepted standard

 $H^+(aq, a=1) + e^- = 1/2H_2(g, 10^5 \text{ Pa}) E = 0 \text{ V}$

SCE (saturated calomel electrode) $Hg_2Cl_2(s) + 2e^- = 2Hg + Cl^- E_{ref} = 0.244 \text{ V vs. NHE}$

Ag/AgCl AgCl(s) + $e^- = Ag(s) + Cl^-(aq)$ $E_{ref} = 0.199$ V with saturated KCl

Non-Cl system: Hg/Hg₂SO₄/K₂SO₄

Nonaqueous system:

- quasireference electrode (QRE):

Ag or Pt wire in organic solvent (e.g., ferrocene/ferrocenium)

Potentials of reference electrodes

E(RHE) = E(NHE) + 0.05916pH E(SCE) = E(NHE) - 0.2444 E(Ag/AgCl) = E(NHE) - 0.2223 E(Ag/AgCl, sat.KCl) = E(NHE) - 0.196 E(Hg/HgO 1M KOH) = E(NHE) - 0.1100 + 0.05946pH $E(Hg/Hg_2SO_4) = E(NHE) - 0.6152$

Potential vs. energy (vs. vacuum)

Example: Potential vs. energy (vs. vacuum)

3. Polarization

Voltammogram: historical one vs. new one

 $E > 0 \rightarrow$ working electrode potential > 0 (positive: right of x-axis) I > 0 \rightarrow oxidation at the working electrode

Polarization: the shift in the voltage across a cell caused by the passage of current

Departure of the cell potential from the reversible(or equilibrium or nernstian) potential Ohmic polarization Activation polarization Concentration polarization

Overvoltage (η): the voltage shift caused by each kind of polarization Extent of potential measured by the overpotential: $\eta = E - E_{eq}$

$$\mathbf{E} = \mathbf{E}_{\mathbf{n}} + \boldsymbol{\eta}_{\mathbf{ohm}} + \boldsymbol{\eta}_{\mathbf{act}} + \boldsymbol{\eta}_{\mathbf{conc}}$$

(i) ohmic polarization

If free of activation & concentration polarization, slope = $1/R_{sol}$

Electrochemistry needs to minimize η_{ohm} κ (conductivity) $\uparrow \rightarrow \eta_{ohm} \downarrow$ (by adding extra electrolyte: "supporting electrolyte") three-electrode system

two-electrode cell vs. three-electrode cell

 $E_{appl} = E + iR_s = E_{eq} + \eta + iR_s$

IR_s: ohmic drop in the solution (ohmic polarization) \rightarrow should be minimized \rightarrow short distance between working and reference electrode & three-electrode cell

Two-electrode cell: iR_s problem due to high current flow Three-electrode cell: current between WE and auxiliary electrode(or counter electrode)

Potential measurement between WE and RE \rightarrow almost no current to reference electrode

→ Potentiostat, etc electrochemical system: three electrode system

Figure) A.J. Bard, L. R. Faulkner, Electrochemical Methods, Wiley, 2001.

$(ii) \ \underline{activation \ polarization}$

slow electrode reaction \rightarrow activation polarization; slow kinetics \propto activation energy

This can be overcome by increasing the temperature and

by applying extra voltage (activation overvoltage (η_{act}))

(iii) concentration polarization

from difference between the electrode surface and bulk concentration $R \rightarrow O + ne^{-1}$ $\eta_{conc} = E - E_n = (RT/nF)ln[(c_R^{\ b}c_O^{\ s})/c_R^{\ s}c_O^{\ b}]]$

Limiting current Ideal polarizable electrode (totally polarized electrode): a very large change in potential upon small current Ideal nonpolarizable electrode: potential does not change upon passage of current (e.g., reference electrode)

I-V Curves in Fuel Cell, Battery, Solar Cell

