Lecture Note #5

Atomic structure of solid surfaces

Reading: Somorjal, ch. 2, Shaw, ch. 5,
Atkins, Phys. Chem.
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Lattices

Crystal structure = lattice + basis
Unit cell, primitive unit cell

Lattice point
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Figure 2 Portion of a crystal of an imaginary protein molecule, in a two-dimensional world. (We
[ ] ® [ ] [ ) [ ) [ ) o picked a protein molecule because it is not likely to have a special symmetry of its own.) The atomic
arrangement in the crystal looks exactly the same to an observer at r’ as to an observer at r,
provided that the vector T which connects r’ and r may be expressed as an integral multiple of the
Figure 20-3 vectors a, and a,. In this illustration, T = —a, + 3a,. The vectors a, and a, are primitive transla-
Atkins Physical Chemistry, Eighth Edition tion vectors of the two-dimensional lattice
©2006 Peter Atkins and Julio de Paula
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Figure 3 Similar to Fig. 2, but with protein molecules associated in pairs. The crystal translation
pe vectors are a; and ay. A rotation of 7 radians about any point marked X will carry the crystal into
itself. This occurs also for equivalent points in other cells, but we have marked the points X only
within one cell.

Figure 202
Atking Physicel Chernistry. Eighth Edition
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14 Bravais lattice: 3D

~Table I The 14 lattice types in three dimensions

Number Restrictions on
of conventional cell
lattices axes and angles

Triclinic 1 0 # 4y # a
a#f#y
Monoclinic 2 0 # 0y # a3
a=y= 90° # B :
Orthorhombic 49 0 # 0y # a
| V a= B =y= 9(°
“Tetragonal 2 0 = 0y # a3
a= B =y= 90°
Cubic 3 0 =a6=a3
a= B =y= 90°
Trigonal 1 0= ay = a3
a=B=y<IA° #9°-
Hexagonal 1 M=a#a
a=p=90°

y=120°

Figure 20-4 ) »
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Rotational symmetry
triclinic

No rotational symmetry

Figure 20-5
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Figure 20-6
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Figure 20-7
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Table 20.1 The seven crystal systems

System Essential symmetries
Triclinic None
Monoclinic One C, axis

Orthorhombic Three perpendicular C,

axes
Rhombohedral One C, axis
Tetragonal One C, axis
Hexagonal One C, axis
Cubic Four C, axesin a

tetrahedral arrangement

Table 20-1
Atkins Physical Chemistry, Eighth Edition
© 2006 Peter Atkins and Julio de Paula









fcc

hcp
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Figure 20-35
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Table 20.2 The crystal structures of some elements

Structure Element

hcp* Be, Cd, Co, He, Mg, Sc, Ti, Zn

fcc* (ccp, cubic F) Ag, Al, Ar, Au, Ca, Cu, Kr, Ne, Ni, Pd, Pb, Pt, Rh, Rn, Sr, Xe
bee (cubic I) Ba, Cs, Cr, Fe, K, Li, Mn, Mo, Rb, Na, Ta, W,V

cubic P Po

* Close-packed structures.

Table 20-2
Atkins Physical Chemistry, Eighth Edition
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Crystal planes
Miller index

Figure 20-9
Atkins Physical Chemistry, Eighth Edition
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Figure 20-18
Atkins Physical Chemistry, Eighth Edition
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Bragg reflection

\_ : J

Figure 20-19
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Kinematic theory of x-ray diffraction

* Incident wave v, is a plane wave with
ko =A/2m U,

* Take one lattice point as the origin O.

* In diffraction the relative phase difference
matters

* Incident wave at O is v,

* Incident wave at R; )

°is Vo exp (kO RJ) ).21. Scattering at the points of a lattice. X = point of observation.

« Scattered wave from j-th lattice point at the detector is R =la; +m a,, +n a,
(I,m,n are integers)

ik- R

g ;

where f; (ko, K) = atomic scattering factor
* Scattered waves from all the lattice points at the detector are
w =X, y; and the detected intensity is | = | | 2.

» Diffraction occurs when the scattered waves from all the lattice points are in phase, i.e.,
Ak-R;=0. This condition is satisfied when
*Ak =G =IDb; +m’b,, +n’ b;, where I’,m’,n’ are integers, and
b, =2n a, xaz/ a; (a, X ag),
b,=2n az;xa,/a, (azxa,), and
b;=2n a; xa,/ az- (a; X a,).
* b4, b,, and b; ,defines another lattice called reciprocal lattice of the real lattice.



Reciprocal Lattice Vectors

To proceed further with the Fourier analysis of the electron concentration
we must find the vectors G of the Fourier sum Zn¢ exp(iG * r) as in (9). There is
a powerful, somewhat abstract procedure for doing this. The procedure forms
the theoretical basis for much of solid state physics, where Fourier analysis is

the order of the day.
We construct the axis vectors by, bs, bs of the reciprocal lattice:

The factors 24 are not used by crystallographers but are convenient in solid
state physics.

If a;, as, a3 are primitive vectors of the crystal lattice, then b,, bg, b are
primitive vectors of the reciprocal lattice. Each vector defined by (13) is orthog-
onal to two axis vectors of the crystal lattice. Thus by, b,, b, have the property

b‘ > a_, = 27"86 3 (14)
where 8; = 1 if i = j and 85 = 0 if i # .
Points in the reciprocal lattice are mapped by the set of vectors
G = v)b; + v3bs + v3b; | (15}

where v, vy, 03 are integers. A vector G of this form is a reciprocal lattice
vector.



Ewald construction




* Reciprocal lattice of fcc crystal
* Brillouin zone in k-space
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Figure 15 Brillouin zones of the face-centered
cubic lattice. The cells are in reciprocal space,
and the reciprocal lattice is body centered.



Five 2D Bravais lattice

Cubic

Rectangular
Centered rectangular
Hexagonal

Oblique

dy
™
a

dl ‘?’ el a?

Fig. 9.1. The five types of two-dimensional Bravais lattices. a) square, &, = a,, a=90°. b) primitive
rectangular, g, #ay, a=90°. <) centered rectangular, @, a,, a=9"°, d) hexagonal, o, =a,, a=60°.
¢) oblique, @, +a,, a+%0°,

v



Real surface with structural defects

Adat Ledge
latom Adatom

Ledge
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Overlayer structures

Wood’s notation: simple but limited

o) (bl

Top left: C (2 x2)
Bottom right: (V2 x v2) R45°

Figure 5.17 Examples and nomenclature of surface layers. Substrate atoms are

represented by dots and adatoms by circles. The unit (1x1) mesh of the substrate is
shown bottom left



Surfaces with periodic steps and kinks

fce (755) - fee (10,8,7)

Fig. 9.4. Structures of fcc(755) and fcc (10,8,7) surfaces. From Van Hove and Somorjai [28].



Matrix notation: can represent any structure

by=mya;+m,a,  in matrix notation, b= - a IR = (711 72

c)

Fig. 9.2. Examples for overlayer structures. a)2x2,b)c(2x2), c) ]/5 xl/g/R 30°.

M=(2), (11 and (_i}

Coherent vs. incoherent structures

ma;=nb,
n/m = rational # : coherent
irrational # : incoherent




2D real vs. reprociprocal lattices
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Fig. 9.11. A two-dimensional real lattice, described
by a,, a, (dark circles), and its reciprocal lattice af,

a3 (open circles).
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Diffraction pattern

el h"7 A k? _2h’k'cosy
d*,.,. bisin’y ' bisin’y b b,sin’y

(9.5)

where y denotes the angle between the axes of the unit cell whose base vectors have lengths b,
and b,. If the unit cell is rectangular (y =90°) eq. (9.5) simplifies to
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Low energy electron diffraction (LEED):
Why low energy electron used?

The penetration depth of x-ray is ~ 1um,

So x-ray diffraction give structural information of a bulk
solid (3D).

It does not have any surface sensitivity.

The penetration depth of low energy

1 — . NS \
Electron is < 20 A; a rather good surface sensitivity. SEREEN :3]_- % VIEWPORT
In any diffraction the employed wavelength A should ~ d.

VACUUM

De Broglie wavelength of e-is

A = h/p = h/ mv = h/(2mE,)*? SR aCENT
If E)=150 eV, A=~ 1A Q

Since diffraction can be observed in elastic scattering, R T RAGTED
The inelastically scattered electrons have to be removed
by setting up an potential barrier (grid assembly). %

The LEED pattern is usually recorded by taking a picture. SAMPLE

Instrument
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Figure 7.8 Overlayers on the (100) surface of a cubic crystal and the associated LEED
patterns in reciprocal space. The notation for the various patterns is indicated on the

right. [From Estrup and McRae, 1971.]
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Fig.4.8a,b. LEED pattern obtained after adsorption of atomic oxygen at low coverage
on Cu(110). (a) (2 1) superstructure as seen on the phosphorus screen. (b) schematic
of the (2x1) pattern with substrate spots as circles and half order spots as crosses [4.5]



Diffraction angle

L1/l

| | | . N (11) Path difference Al = d sin®
o —o —o Diffraction condition is
; ) ; dsin@=nA;n=0,1,2,3 ...




