Electrochemical Energy Engineering, 2019

5. Electrode Processes 2

Learning subject

- 1. Butler-Volmer equation
- 2. Tafel plot
- 3. Mass transport

Learning objective

- 1. Understanding the relation between potential and current
- 2. Understanding Butler-Volmer equation and Tafel plot
- 3. Understanding limiting current from mass transport

1. Butler-Volmer equation

Nernst equation : equilibrium expression \rightarrow electrode reaction rate? (kinetics)

Electron transfer at an electrode

Reduction & oxidation at electrode are accomplished by heterogeneous electron transfer reactions since electron transfer occurs at the interface between electrode and solution → relationship between potential and rate of electrode reaction (which determine current)

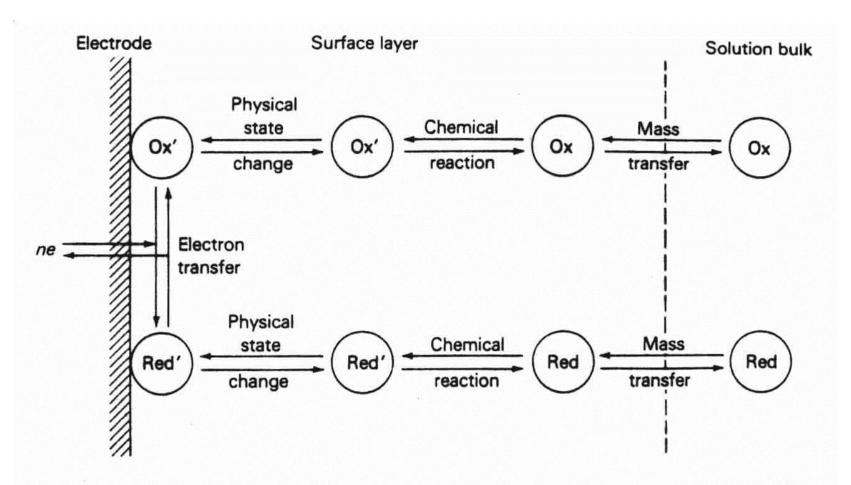


FIGURE 19-10 Steps in the reaction $Ox + ne \rightleftharpoons Red$ at an electrode. Note that the surface layer is only a few molecules thick. (Adapted from: A. J. Bard and L. R. Faulkner, *Electrochemical Methods*, p. 21, Wiley: New York, 1980. Reprinted by permission of John Wiley & Sons, Inc.)

Review of homogeneous kinetics Dynamic equilibrium

$$O + e = R$$
 k_b

Rate of the forward process

$$v_f(M/s) = k_f C_A$$

Rate of the reverse reaction

$$v_b = k_b C_B$$

Rate const, k_f , k_b : s^{-1}

Net conversion rate of A & B

$$v_{net} = k_f C_A - k_b C_B$$

At equilibrium, $v_{net} = 0$

$$k_f/k_b = K = C_B/C_A$$

*kinetic theory predicts a const conc ratio at equilibrium, just as thermodynamics

At equilibrium, kinetic equations → thermodynamic ones

 \rightarrow dynamic equilibrium (equilibrium: nonzero rates of $k_f \& k_b$, but <u>equal</u>)

Exchange velocity

$$v_0 = k_f(C_A)_{eq} = k_b(C_B)_{eq}$$

Relationship between current and heterogeneous rate constants

Faraday's law: chemical reaction \rightarrow electric **current** \rightarrow an indicator of **reaction** rate

Amount of electricity,

$$q = nFN$$

n: electron number, N: number of moles, F: Faraday constant (96485 C/mol)

e.g.,
$$PbSO_4(s) + 2H_2O(1) \rightarrow 2e^- + PbO_2(s) + HSO_4^-(aq) + 3H^+(aq)$$

$$q/2F = -\Delta N_{PbSO4} = -\Delta N_{H2O}/2 = \Delta N_{PbO2} = \Delta N_{HSO4} = \Delta N_{H+}/3$$

The passage of two moles of electrons = destroy one mole of $PbSO_4$, destroy two moles of water, create one mole of PbO_2 ...

If we generalize this result and apply it to the oxidation reaction,

$$R \rightarrow ne^- + O$$

Then,

$$q/nF = -\Delta N_R = \Delta N_O$$

I = dq/dt = nFdN/dt

$$I/nF = -dN_R/dt = dN_O/dt = rate$$

$$O + e^{-} = R$$

$$E_n = E^0 - RT/F \ln(c_R/c_O)$$

depends on the concentrations of the two species and E⁰

"=" means,

$$R \rightarrow e^- + O$$

$$O + e^{-} \rightarrow R$$

At E_n (E_{eq}), the rates

$$\mathbf{r}_{ox}(\mathbf{E}_{n}) = \mathbf{r}_{rd}(\mathbf{E}_{n})$$

because no net reaction occurs. The rate r depend on the electrode potential E.

What exactly is meant by the "rate" of an electrode reaction?

At the potential of E,

$$\mathbf{r}_{net}(\mathbf{E}) = \mathbf{r}_{ox}(\mathbf{E}) - \mathbf{r}_{rd}(\mathbf{E})$$

net reaction rate: the rate at which R is destroyed, or the rate at which O is created, per unit area of electrode (unit of molm⁻²s⁻¹) "heterogeneous reaction rate"

$$r_{net}(E) = -(1/A)(dN_R/dt) = (1/A)(dN_O/dt)$$

$$\mathbf{r}_{ox}(\mathbf{E}) = \mathbf{k}_{ox}(\mathbf{E})\mathbf{c}_{\mathbf{R}}^{\ \ s}$$

"s" means that the concentrations at the electrode surface

 $k_{ox}(E)$: oxidative rate constant (ms⁻¹)

$$\mathbf{r}_{rd}(\mathbf{E}) = \mathbf{k}_{rd}(\mathbf{E})\mathbf{c}_{\mathbf{O}}^{\ \ s}$$

 $k_{rd}(E)$: reductive rate constant

$$r_{net}(E) = I/nAF = i/nF$$

From
$$r_{net}(E) = r_{ox}(E) - r_{rd}(E)$$
, $r_{ox}(E) = k_{ox}(E)c_R$, $r_{rd}(E) = k_{rd}(E)c_O$

Relate the faradaic current and rate constants

$$\mathbf{i} = \mathbf{nF}[\mathbf{k}_{ox}\mathbf{c}_{\mathbf{R}}^{s} - \mathbf{k}_{rd}\mathbf{c}_{\mathbf{O}}^{s}]$$

cf) $k_{ox} = k_a$ of anode, $k_{rd} = k_c$ of cathode

when $k_{ox}(E)c_R^s = k_{rd}(E)c_O^s \rightarrow \text{zero current} \rightarrow \text{equilibrium}$ when $k_{ox}(E)c_R^s > k_{rd}(E)c_O^s \rightarrow \text{anodic current } (i_a) \rightarrow \text{oxidation of R to O}$ when $k_{ox}(E)c_R^s < k_{rd}(E)c_O^s \rightarrow \text{cathodic current } (i_c) \rightarrow \text{reduction of O to R}$

Potential dependence of heterogeneous rate constants

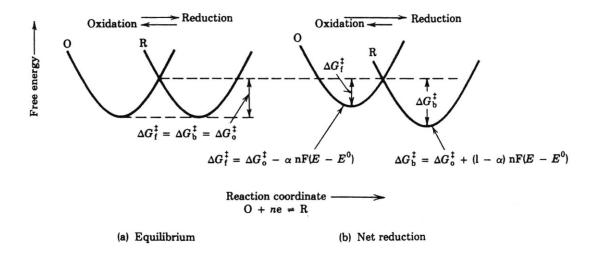
$$O + ne^{-} = R$$

Transition state model,

$$k_{rd} = k_f = Aexp(-\Delta G_f^{\ddagger}/RT)$$

where ΔG_f^{\ddagger} is the free energy of activation and A is a frequency factor which accounts for the rate of collision of the electroactive molecule with the electrode surface

cf) $k_{ox} = k_b$ of anode, $k_{rd} = k_f$ since forward direction (\rightarrow) is reduction one.



(a) equilibrium between O and R

 $O \rightarrow R$: pass over the activation free energy barrier, ΔG_f^{\ddagger}

 $R \rightarrow O$: pass over the activation free energy barrier, ΔG_b^{\ddagger}

At equilibrium, $\Delta G_f^{\ddagger} = \Delta G_b^{\ddagger} \rightarrow$ probability of electron transfer is the same in each direction \rightarrow no net curent \rightarrow $i_c + i_a = 0$

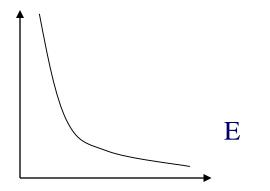
No net current means same rates between forward and backward (not zero current) \rightarrow exchange current i_0 at equilibrium; $i_0 = i_c = -i_a$

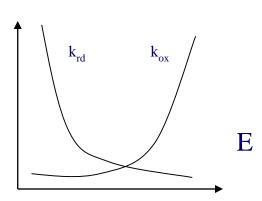
$$i_0 \uparrow as \Delta G \downarrow$$

(b) net reduction

<u>applying negative potentials</u>

reduction: more negative potential $\rightarrow k_f \uparrow, k_b \downarrow$





Negative potential $E \to lower \Delta G_f^{\ddagger}$ and raise ΔG_b^{\ddagger} Potential change $E - E^0 \to free$ energy change $-nF(E-E^0) \Rightarrow part$ of this energy change (factor α) \to decrease in the activation barrier for reduction (forward reaction); part (factor $(1 - \alpha)$) \to increase in the activation barrier for oxidation

$$\Delta G_f^{\ddagger} = \Delta G^{0\ddagger} - \alpha n F(E-E^{0"})$$

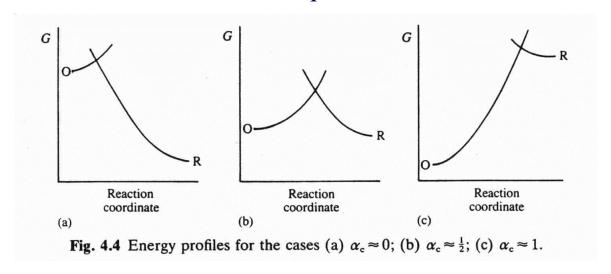
$$\Delta G_b^{\ddagger} = \Delta G^{0\ddagger} + (1-\alpha)n F(E-E^{0"})$$

Applying potential to the electrode \rightarrow activation free energy barrier α ; "transfer coefficient" or "symmetry factor" since α is a measure of the symmetry of the energy barrier \rightarrow a symmetrical energy barrier ($\alpha = 0.5$), real systems: $0.3 \sim 0.7$ semiconductor: ~ 0 or ~ 1

$$O + ne^{-} \rightarrow R$$
Actually,
$$O + \alpha ne^{-} \rightarrow R - (1 - \alpha)ne^{-}$$

 α , -(1- α); orders of the reductive and oxidative processes

another interpretation of α : increasing electrochemical activity of electrons \rightarrow it accelerates the reductive process and retards the oxidative process $\rightarrow \alpha$ is the fraction of the increase r_{rd} , (1- α) is the fraction that diminishes r_{ox} α = 0.5; perfect symmetric, these fractions are equal



Arrhenius form,

$$\begin{aligned} k_f &= k^0 exp[-\alpha nF(E-E^0)/RT] \\ k_b &= k^0 exp[(1-\alpha)nF(E-E^0)/RT] \end{aligned}$$

Where k^0 is the standard rate constant, $k_f = k_b = k^0$ at E^0 . k^0 , $\alpha \rightarrow$ rate constant. Relationship between potential and rate

Relationship between current and potential

$$i_c = nFc_O^s k_f$$
 and $i_a = -nF c_R^s k_b$
$$i_c = nFk^0 c_O^s exp\{-\alpha nF(E-E^0)/RT\}$$

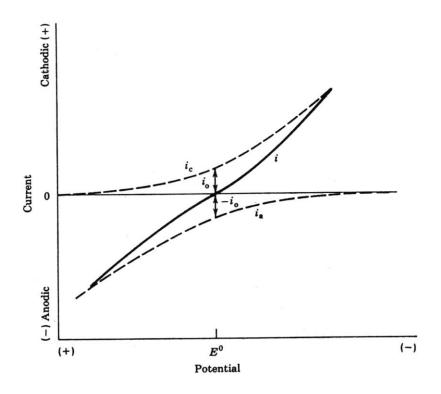
$$i_a = -nFk^0 c_R^s exp\{(1-\alpha)nF(E-E^0)/RT\}$$

$$i = i_c + i_a$$

Butler-Volmer equation

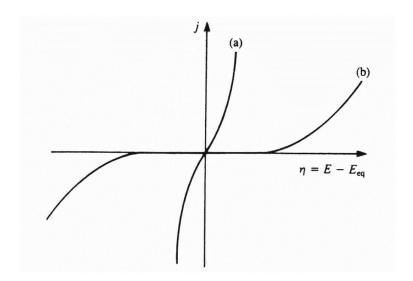
$$i = nFk^0[c_0^s exp\{-\alpha nF(E-E^0)/RT\} - c_n^s exp\{(1-\alpha)nF(E-E^0)/RT\}]$$

This relationship links the faradaic current, electrode potential, the concentrations of electroactive species at the electrode surface



i and i_c and i_a as a function of potential E; negative E $\uparrow \rightarrow i_c \uparrow$ (forward reaction), positive E $\uparrow \rightarrow i_a \uparrow$ (backward)

 k^0 ; 1 ~ 50 cm s⁻¹ for very fast reactions, 10^{-9} cm s⁻¹ for very slow reactions. Exchange current density i_0 ; 10 Acm⁻² ~ 1 pAcm⁻²



The effect of the value of k_0 on the current density close to E_{eq} (a) k_0 large (b) k_0 smaller

At equilibrium, zero net current, $i_c = -i_a$ Butler-Volmer equation (kinetics) \rightarrow Nernst equation (thermodynamics)

$$E = E^0 - (RT/nF)\ln(c_R^s/c_O^s)$$

$$i_0 = i_c = nFk^0c_O^s \exp\{-\alpha nF(E-E^0)/RT\} = i_a = -nFk^0c_R^s \exp\{(1-\alpha)nF(E-E^0)/RT\} \Longrightarrow$$

$$i_0 = nFk^0(c_0^s)^{1-\alpha}(c_R^s)^{\alpha}$$

high exchange current density \rightarrow high reaction rate

2. Tafel plot

Essentials of electrode reactions

*accurate kinetic picture of any dynamic process must yield an equation of the thermodynamic form in the limit of equilibrium

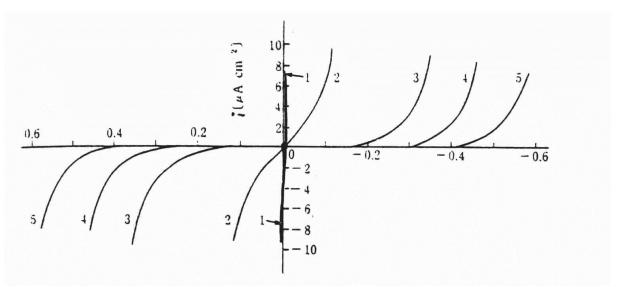
$$O + ne = R$$
 k_b

Equilibrium is characterized by the Nernst equation

$$E = E^{0'} + (RT/nF)ln(C_o^*/C_R^*)$$
bulk conc

Kinetic: dependence of current on potential Overpotential $\eta = a + b log i$

Tafel equation



The effect of exchange current density on overpotential

Butler-Volmer equation/ i_0 $i = nFk^0[c_0^s exp{-\alpha nF(E-E^0)/RT} - c_R^s exp{(1-\alpha)nF(E-E^0)/RT}]$

and let F/RT = f, overpotential $\eta = E - E^0 \Rightarrow$ current-overpotential equation

$$\begin{split} i &= i_0[exp(-\alpha nf\eta) - exp((1-\alpha)nf\eta)] \\ \eta >> 0 \text{ (oxidation, only O in bulk)} &\to exp(-\alpha nf\eta) << exp((1-\alpha)nf\eta) \\ &\quad i = -i_0 \exp((1-\alpha)nf\eta) \end{split}$$

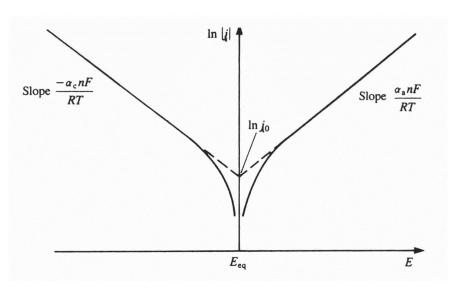
apply log,

$$\eta = -(RT/(1-\alpha)nF)lni_0 + (RT/(1-\alpha)nFln|i|$$

for $\eta << 0$ (reduction), $\eta = (RT/\alpha nF) \ln |i|$

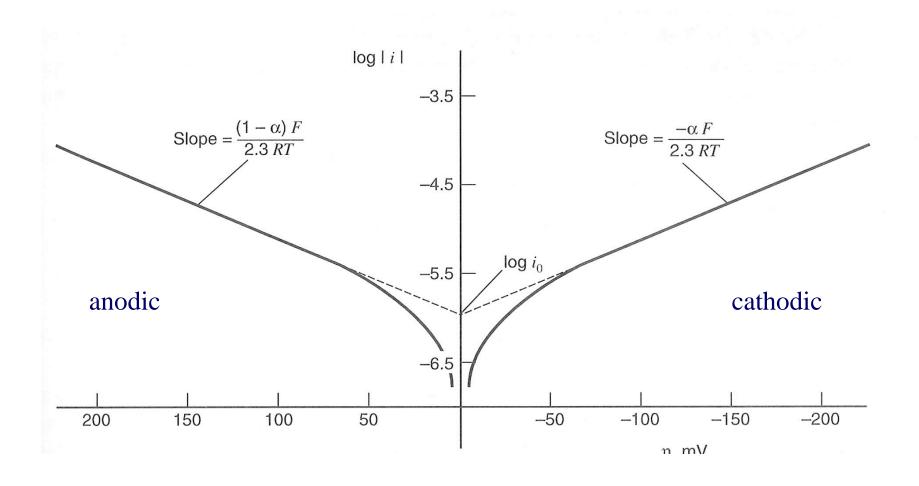
Tafel plot \rightarrow measure i_0 and α

$$\mathbf{E} \cdot \mathbf{E}^0 = \mathbf{\eta} = \mathbf{a} \ln \mathbf{i}_0 \pm \mathbf{b} \ln |\mathbf{i}|$$



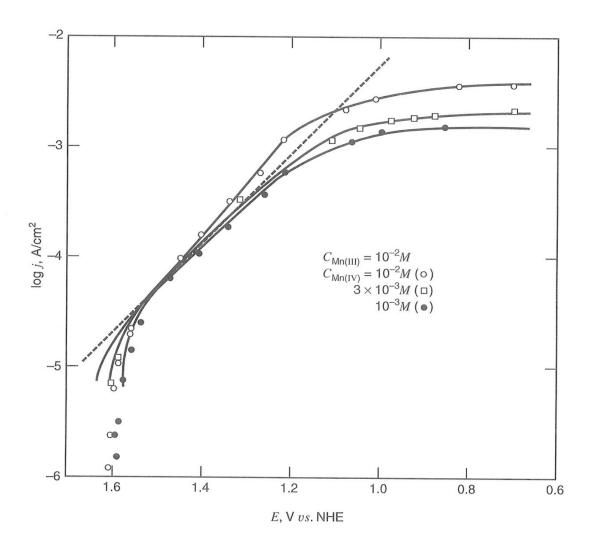
Plot of $\ln |i|$ vs. E showing how to measure i_0 and α from the slopes of the lines

Tafel plots (i vs. \eta) \rightarrow evaluating kinetic parameters (e.g., i_0 , α)



e.g., real Tafel plots for Mn(IV)/Mn(III) system in concentrated acid

- At very large overpotential: mass transfer limitation



Summary of Butler-Volmer Kinetics and Useful Simplifications

1. General kinetics, applicable under all current density conditions; the general BV expression for η (solve numerically):

$$i_{\text{cell}} = i_o \left\{ \exp\left(\frac{\alpha_a F}{R_u T} \eta\right) - \exp\left(\frac{-\alpha_c F}{R_u T} \eta\right) \right\}$$
 (4.52)

2. Low polarization, facile kinetics, linearized BV approximation (explicit η expression):

$$\eta = \pm \frac{i}{i_o} \frac{R_u T}{(\alpha_a + \alpha_c) F} \tag{4.53}$$

3. High polarization, Tafel approximation (explicit η expression):

$$\eta = \frac{R_u T}{\alpha_j F} \ln \left(\frac{i}{i_o} \right) \tag{4.54}$$

4. Both regions, $\alpha_a = \alpha_c$ sinh simplification (explicit η expression):

$$\frac{R_u T}{\alpha F} \sinh^{-1} \left(\frac{i_{\text{cell}}}{2i_o} \right) = \eta \tag{4.55}$$

3. Mass Transport

Mass transport

rate =
$$k_a C_R^s - k_c C_O^s$$

Electrochemical reaction at electrode/solution interface: molecules in bulk solution must be transported to the electrode surface \rightarrow "mass transfer"

$$C_O^b = C_O^s = C_R^s = C_R^b$$

Mechanisms for mass transport:

- (a) Migration: movement of a charged body under the influence of an electric field (a gradient of electric potential)
- (b) Diffusion: movement of species under the influence of gradient of chemical potential (i.e., a concentration gradient)
- (c) Convection: stirring or hydrodynamic transport

Nernst-Planck equation (diffusion + migration + convection)

$$J_{i}(x) = -D_{i}(\partial C_{i}(x)/\partial x) - (z_{i}F/RT)D_{i}C_{i}(\partial \phi(x)/\partial x) + C_{i}v(x)$$

Where $J_i(x)$; the flux of species i (molsec⁻¹cm⁻²) at distance x from the surface, D_i ; the diffusion coefficient (cm²/sec), $\partial C_i(x)/\partial x$; the concentration gradient at distance x, $\partial \phi(x)/\partial x$; the potential gradient, z_i and C_i ; the charge and concentration of species i, v(x); the velocity (cm/sec)

1. Steady state mass transfer

steady state, $(\partial C/\partial t) = 0$; the rate of transport of electroactive species is equal to the rate of their reaction on the electrode surface

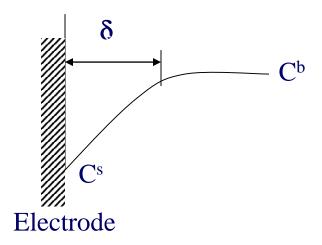
In the absence of migration,

$$R = O + ne^{-}$$

The rate of mass transfer,

$$v_{mt} \propto (\partial C_R(x)/\partial x)_{x=0} = (C_R^b - C_R^s)/\delta$$

where x is distance from the electrode surface & δ : diffusion layer



$$\mathbf{v}_{\mathrm{mt}} = \mathbf{m}_{\mathrm{R}} [\mathbf{C}_{\mathrm{R}}^{\ b} - \mathbf{C}_{\mathrm{R}}^{\ s}]$$

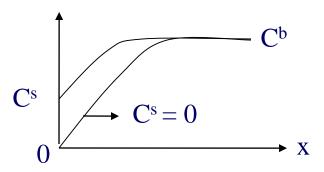
where $C_R^{\ b}$ is the concentration of R in the bulk solution, $C_R^{\ s}$ is the concentration at the electrod surface m_R is "mass transfer coefficient"

$$i = nFm_R[C_R^{\ b} - C_R^{\ s}]$$

$$i = -nFm_O[C_O^b - C_O^s]$$

largest rate of mass transfer of R when $C_R^s = 0 \rightarrow$ "limiting current"

$$i_{l,a} = nFm_R C_R^{\ b}$$



$$C_R^{s}/C_R^{b} = 1 - (i/i_{l,a})$$

And

$$C_R^s = [1 - (i/i_{l,a})] [i_{l,a}/nFm_R] = (i_{l,a} - i)/(nFm_R)$$

Same method,

$$\begin{split} C_{O}^{s}/C_{O}^{b} &= 1 - (i/i_{l,c}) \\ i_{l,c} &= nFm_{O}C_{O}^{b} \\ C_{O}^{s} &= [1 - (i/i_{l,c})] \ [i_{l,c}/nFm_{O}] = (i_{l,c} - i)/(nFm_{O}) \end{split}$$

Put these equations to $E = E^0 - (RT/nF)\ln(C_R^s/C_O^s)$

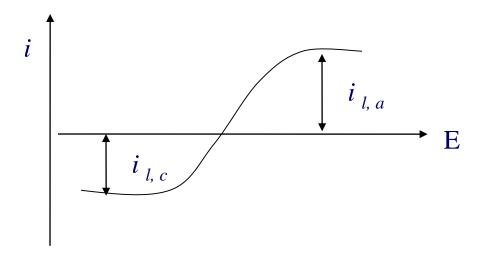
$$E = E^{0} - (RT/nF)ln(m_{O}/m_{R}) - (RT/nF)ln[(i_{l,a} - i)/(i - i_{l,c})]$$

Let

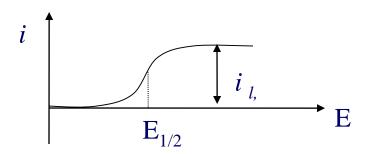
$$E_{1/2} = E^0 - (RT/nF)ln(m_O/m_R)$$

Then,

$$E = E_{1/2} - (RT/nF)ln[(i_{l,a} - i)/(i - i_{l,c})]$$



 $E_{1/2}$, half-wave potential, independent of C_O^b and $C_R^b \to \text{characteristic}$ of the R/O system.



Reversibility:

<u>reversible</u>: $k^0 >> m_O$ or $m_R \to kinetic$ rate constant >> mass transport rate constant \to system is at equilibrium at the electrode surface and it is possible to apply the Nernst equation at any potential

<u>irreversible</u>: $k^0 \ll m_O$ or m_R

2. Non-steady state mass transport: diffusion control

The rate of diffusion depends on the concentration gradients

$$J = -D(\partial C/\partial x)$$
 Fick's first law

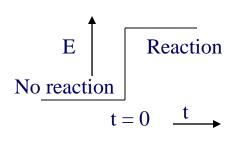
D: diffusion coefficient (cm²/sec)

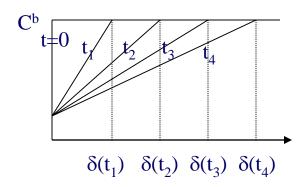
The variation of concentration with time due to diffusion \rightarrow Fick's second law

$$\partial \mathbf{C}/\partial \mathbf{t} = -\mathbf{D}(\partial^2 \mathbf{C}/\partial \mathbf{x}^2)$$
 1-D

$$J = -D(\partial C/\partial x) = i/nF$$
$$D(\partial C/\partial x) = D(C^b - C^s)/\delta = i/nF$$

Time-dependent, applying potential step E





Moles of species in diffusion layer = $\int idt/nF \approx [C^b - C^s](A\delta(t)/2)$

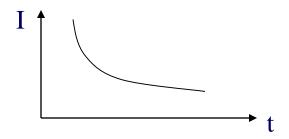
Differentiating,

$$\begin{split} i/nF &= [C^b - \!C^s] (Ad\delta(t)/2dt) = D(C^b - C^s)/\delta(t) \\ d\delta(t)/dt &= 2D/\delta(t), \, \delta(t) = 0 \text{ at } t = 0 \\ \delta(t) &= 2\sqrt(Dt) \\ i/nF &= (D^{1/2}/2t^{1/2}) \; [C^b - \!C^s] \end{split}$$

diffusion layer grows with $t^{1/2}$ and current decays with $t^{-1/2}$

potential step (chronoamperometry), planar electrode: <u>Cottrell equation</u> (in Table)

constant current \rightarrow potential variation at time (chronopotentiometry): <u>Sand</u> equation $(t = \tau \text{ (transition time) at } C^s = 0)$



1. Polarization curve

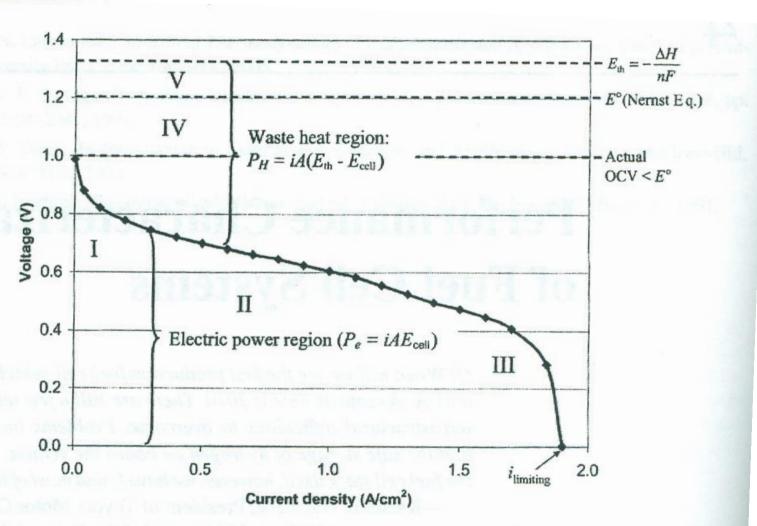


Figure 4.1 Typical polarization curve for fuel cell with significant kinetic, ohmic, concentration, and crossover potential losses.

hydrogen-air FC

- -5 regions
- (i) Region I: activation (kinetic) overpotential at the electrodes
- (ii) Region II: ohmic polarization. Electric & ionic conduction loss
- (iii) Region III: concentration polarization. Mass transport limitations
- (iv) Region IV. Departure from Nernst thermodynamic equilibrium potential; undesired species crossover through electrolyte, internal currents from electron leakage, other contamination or impurity
- (v) Region V: the departure from the maximum thermal voltage; a result of entropy change which cannot be engineered
- -Regions I, II, III are not discrete \rightarrow all modes of loss contribute throughout the entire current range
- -Heat: current x (thermal voltage FC voltage)
- & electrical generation: cell current x FC voltage
- -FC voltage: $E_{\text{cell}} = E^{\circ}(T, P) \eta_{a,a} |\eta_{a,c}| \eta_r \eta_{m,a} |\eta_{m,c}| \eta_x$ (4.1)