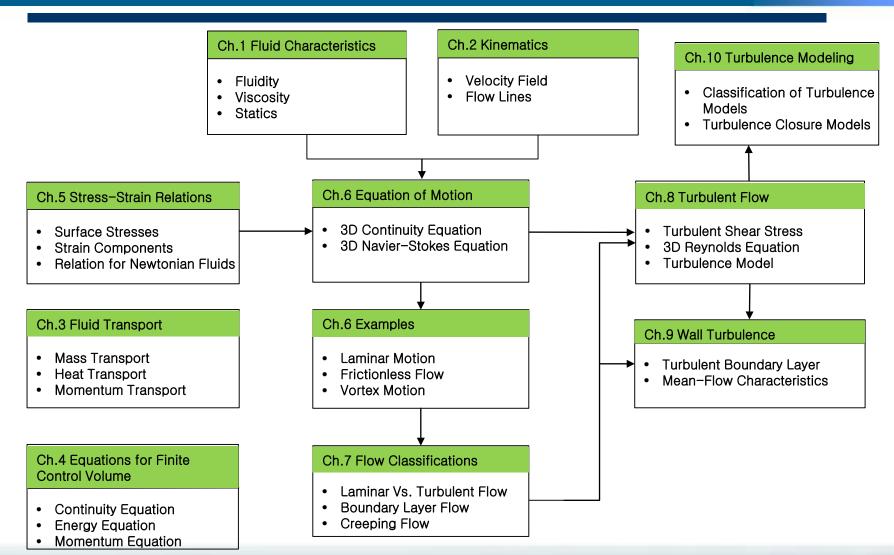

Fluid Dynamics

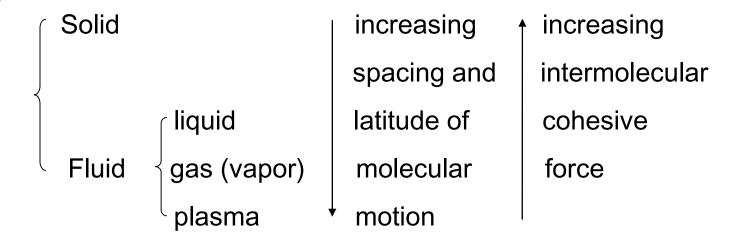

Chapter 1 Fluid Characteristics

Outline of Course

Chapter 1 Fluid Characteristics

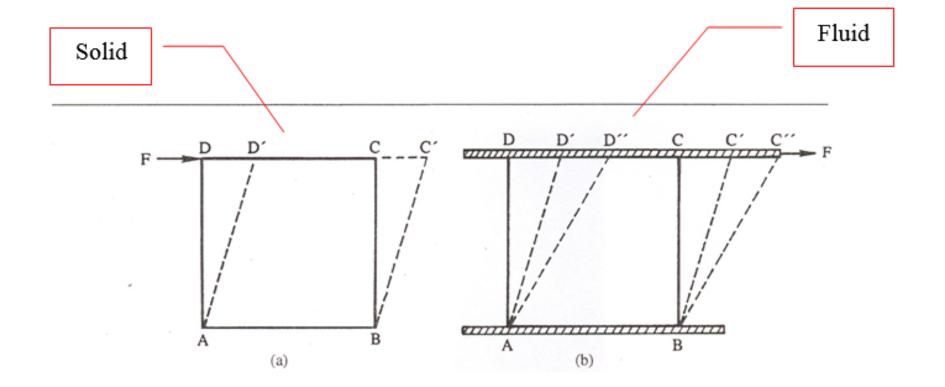
Contents

- 1.1 Introduction
- 1.2 Units of Measurement
- 1.3 Properties and States of Fluids


Objectives

- Define fluidity
- Study fundamental properties of the fluid

1.1.1 Phases



1.1.2 Fluidity

Fluid	Solid		
 deform continuously under shearing (tangential) stresses no matter how small the stress stress time rate of angular deformation (strain, displacement) 	 deform by an amount proportional to the stress applied stress		

1.1.3 Compressibility

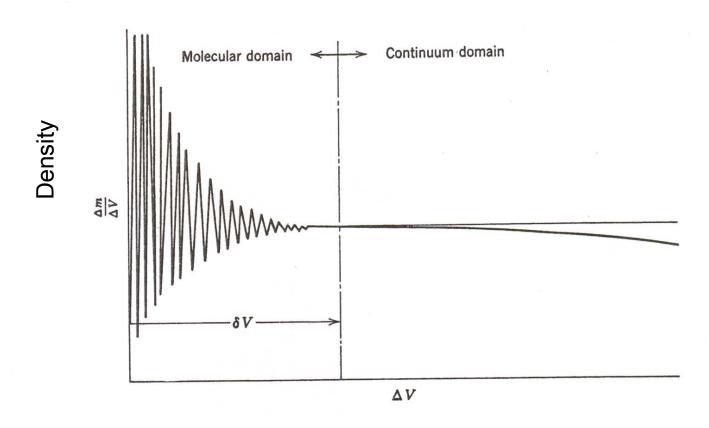
- 1) compressible fluid: gases, vapors → thermodynamics
- 2) incompressible fluid: liquid (small compressibility), water

1.1.4 Continuum approach

- dimensions in fluid space are large compared to the molecular spacing to ignore discrete molecular structure
- neglect void
- Consider a small volume of fluid ΔV containing a large number of molecules, and let Δm and V be the mass and velocity of any individual molecule

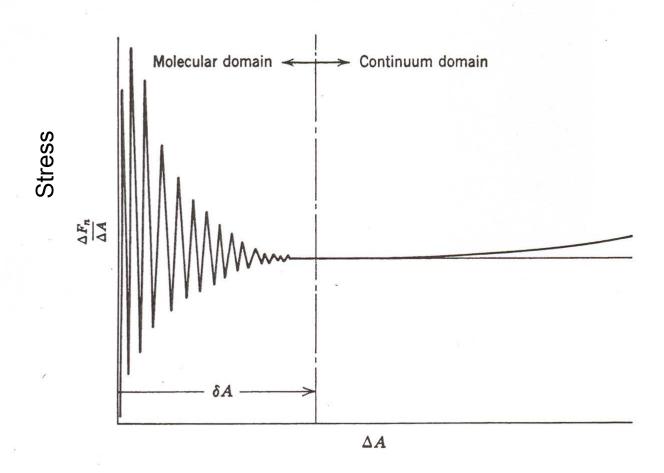
$$\rho = \lim_{\Delta V \to \varepsilon} \frac{\sum \Delta m}{\Delta V}$$

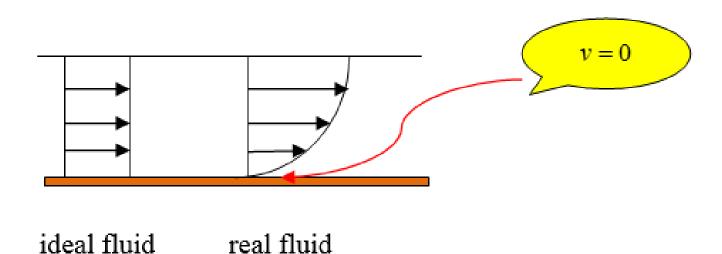
$$\vec{u} = \lim_{\Delta V \to \varepsilon} \frac{\sum v \Delta m}{\sum \Delta m}$$


ε = volume which is sufficiently small compared with the smallest significant length scale in the flow field but is sufficiently large that it contains a large number of molecules

[Cf] Molecular approach

- molecular point of view
- well developed for light gases





1.1.5 No-slip condition at rigid boundary

- 1) behavior of continuum type viscous fluids
- 2) zero relative velocity at the boundary surface (proven by experiments)

1.1.6 Multiphase system

Single- phase fluid: multi-species system (dissolved contaminants)

combination of liquid – gas

Multiphase systems

combination of liquid – vapor

→ cavitation problem

combination of liquid - solid

→ sediment/pollutant transport

combination of gas - solid

1.2 Units of Measurement

- SI system: metric system
- English system: ft-lb system
- * Newton's 2nd law of motion

$$F = ma$$

$$F = \text{force}(N)$$
; $m = \text{mass}(kg)$; $a = \text{acceleration}(m/\text{sec}^2)$

$$F \rightarrow 1 \text{kg} \cdot \text{m} / \text{sec}^2 = 1 \text{N}$$

$$W = mg$$

$$W = \text{weight}$$
; $g = \text{gravitational acceleration}$

- 1) extensive (external) properties
 - depend on amount of substance
 - → total volume, total energy, total weight
- 2) intensive (internal) properties
 - independent of the amount present
 - → volume per unit mass, energy per unit mass

weight per unit volume (specific weight, γ) pressure, viscosity, surface tension

1.3.1 Properties of importance in fluid dynamics

(1) Pressure, $p \sim \text{scalar}$

$$p = F / A (N/m^2)$$

$$p_{\text{gauge}} = p_{\text{absolute}} - p_{atm}$$

Forces on a fluid element

Body force: act without physical contact

Surface force: require physical contact for transmission

tangential stress → shear stress

(2) Temperature, T two bodies in thermal equilibrium \rightarrow same temperature

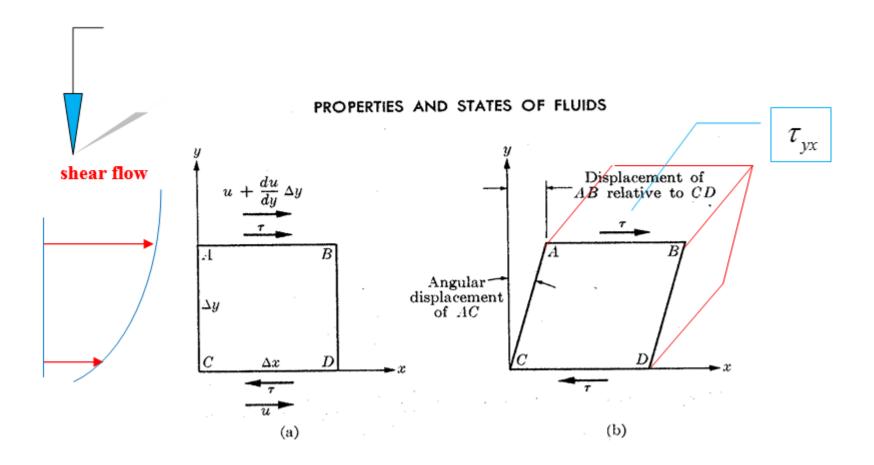
(3) Density, ρ $\rho = \text{mass / volume} = \frac{M}{V}$ volume ∞ (pressure, temperature)

(4) Specific weight, γ

 γ = weight / volume

[Re] Flow of a continuous medium

- ~ Fluids are treated as homogeneous materials.
- ~ Molecular effects are disregarded.


mass density
$$\rho(x, y, z, t) = \lim_{\Delta V \to 0} \frac{\Delta M}{\Delta V}$$

velocity vector
$$v = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t}$$

- (5) Viscosity, μ
 - ~ due to molecular mobility
 - ~ whenever a fluid moves such that a <u>relative motion</u> exists between adjacent volumes (different velocity)

i) displacement of AB relative to CD in Δt

$$\left(u + \frac{du}{dy}\Delta y\right)\Delta t - u\Delta t = \frac{du}{dy}\Delta y \Delta t$$

ii) strain = <u>relative</u> displacement = <u>angular displacement</u>

$$\left[\frac{du}{dy} \Delta y \Delta t \right] / \Delta y = \frac{du}{dy} \Delta t$$

iii) time rate of strain (= time rate of angular displacement of AC)

$$\frac{du}{dy}\Delta t / \Delta t = \frac{du}{dy}$$

$$\tau \propto \frac{du}{dy}$$

$$\tau_{yx} = \mu \frac{du}{dy}$$

where

```
	au_{yx} = shear stress acting in the x - direction on a plane whose normal is y - direction (N/m^2) \frac{du}{dy} = rate of angular deformation (1/\sec) \mu = dynamic molecular viscosity
```


$$\mu = \frac{\tau}{\frac{du}{dy}} = \frac{N/m^2}{\frac{m/s}{m}} = N \cdot s/m^2$$

=
$$(kg \cdot m / s^2) \cdot \frac{s}{m^2} = kg / m \cdot sec = kg/m \cdot s$$

♦ Kinematic viscosity, V

$$v = \frac{\mu}{\rho} = \frac{\text{kg/m} \cdot \text{s}}{\text{kg/m}^3} = \text{m}^2/\text{s} \rightarrow \text{kinematic dimensions} \rightarrow \text{Fig. 1.4}$$

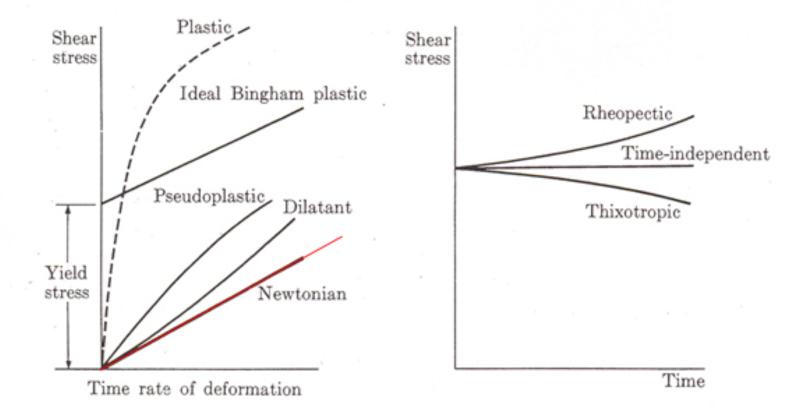
[Cf] dynamic: F, L, T → shear stress

kinematic: L, T → deformation

viscosity links two

♦ Types of Fluid

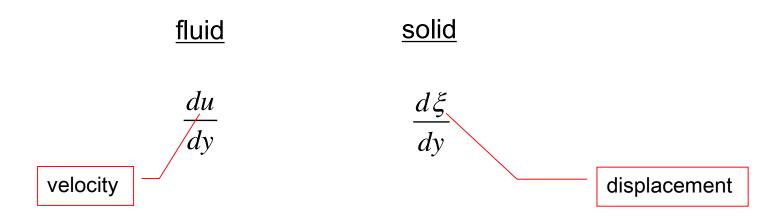
Newtonian fluid
$$\left\{\begin{array}{l} \text{ Constant and unique value of } \mu \\ \text{ linear relation between } \tau \text{ and } \frac{du}{dy} \end{array}\right.$$
 Non-Newtonian fluid $\left\{\begin{array}{l} \text{ Non-Newtonian fluid } \end{array}\right.$ $\left\{\begin{array}{l} \text{ Non-Newtonian fluid } \end{array}\right.$



Newtonian fluid	Non-Newtonian fluid			
 shear stress is <u>linearly proportional</u> to rate of angular deformation starting with zero stress and zero deformation constant of proportionality = µ, <u>dynamic viscosity</u> → Fig. 1.1 water, air [Cf] Analogy between Newtonian fluid	 variable (<u>nonlinear</u>) proportionality between stress and deformation rate proportionality f (length of time of exposure to stress, magnitude of stress) plastics: paint, jelly, polymer solutions 			
and solids obeying Hooke's law of constant modulus of elasticity	→ Rheology			

[Cf] Stress-strain relationship for solid

$$\tau_{yx} = G \frac{d\xi}{dy}$$


 $d\xi$ = relative station displacement of AB

$$\frac{d\xi}{dy}$$
 = angular deformation (shear strain)

G = modulus of elasticity in torsion

 $*\mu$ = function of (temperature, pressure)

Viscosity versus temperature

	Liquid	Gas		
major factor for viscosity	intermolecular cohesion	exchange of momentum		
when temperature is increasing	decrease cohesive force → decrease viscosity	increase molecular activity → increase shear stress		

[Re] Exchange of momentum

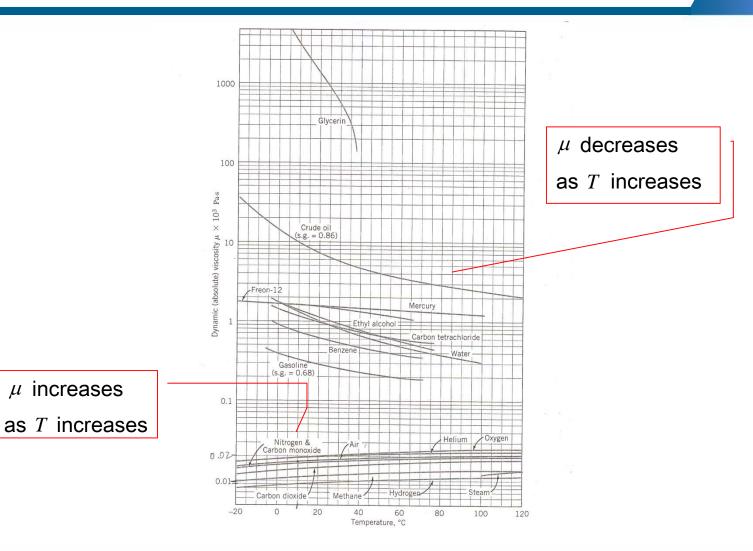
fast-speed layer (FSL)

molecules from FSL speed up molecules in LSL molecules from LSL slow down molecules in FSL

low-speed layer (LSL)

Two layers tend to stick together as if there is some viscosity between two.

	SI Units						
	<i>T,</i> °C	ρ, kg/m³	s.g.,	E, kPa	$\mu \times 10^4$ Pa · s	σ, N/m	p _v , kPa
Ethyl alcohol	20	788.6	0.79	1, 206 625	12.0	0.022	5.86
Freon-12	15.6	1 345.2	1.35	_	14.8	_	_
	-34.4	1 499.8		_	18.3	_	_
Gasoline	20	680.3	0.68	-	2.9	_	55.2
Glycerin	20	1 257.6	1.26	4 343 850	14 939	0.063	0.000 014
Hydrogen	-257.2	73.7		_	0.21	0.0029	21.4
Jet fuel (JP-4)	15.6	773.1	0.77	_	8.7	0.029	8.96
Mercury	15.6	13 555	13.57	26 201 000	15.6	0.51	_0.000 17
- 11	315.6	12 833	12.8		9.0	_	47.2
Oxygen (Liquid)	-195.6	1 206.0 1	_	_	2.78	0.015	21.4
Sodium	315.6	876.2	3,550		3.30	_	- 11
	537.8	824.6		_	2.26	_	_ /4
Water ^b	20	998.2	1.00	2.170,500	10.0	0.073	2.34
Sea water ^b	20	1024.0	1.03	2,300,000	10.7	0.073	2.34

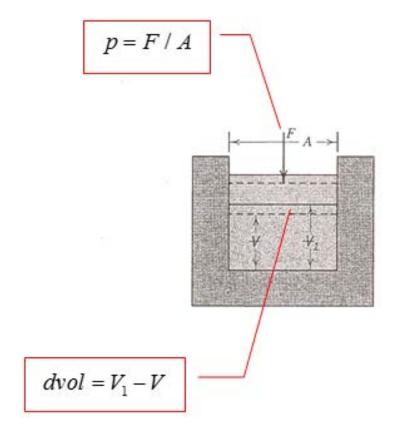

^bThe specific heat of liquid water is approximately 25 000 ft·lb/slug·°R or 4 180 J/kg·K.

Water:

$$\mu = 1.0 \times 10^{-3} \, \frac{N}{m^2} \, s$$

- (6) Specific heat, C= ratio of the quantity of heat flowing into a substance per unit mass to the change in temperature
- (7) Internal energy, u specific internal energy = energy per unit mass, J/kg kinetic + potential energy \rightarrow internal energy
- (8) Enthalpy specific enthalpy = $u + p / \rho$

- (9) Bulk modulus of elasticity and Compressibility
 - 1) Compressibility, C
 - = measure of <u>change of volume and density</u> when a substance is subjected to normal pressures or tensions
 - = % change in volume (or density) for a given pressure change


$$C = -\frac{dvol}{vol}\frac{1}{dp} = +\frac{d\rho}{\rho}\frac{1}{dp}$$

2) Bulk modulus of elasticity, E_{ν}

$$E_{v} = \frac{1}{C} = -\frac{dp}{dvol/vol} = \frac{dp}{d\rho/\rho}$$

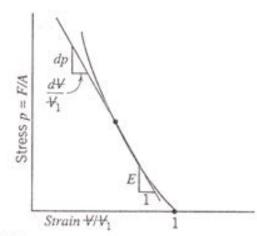


Fig. 1.3

(10) Vapor pressure, p_{v}

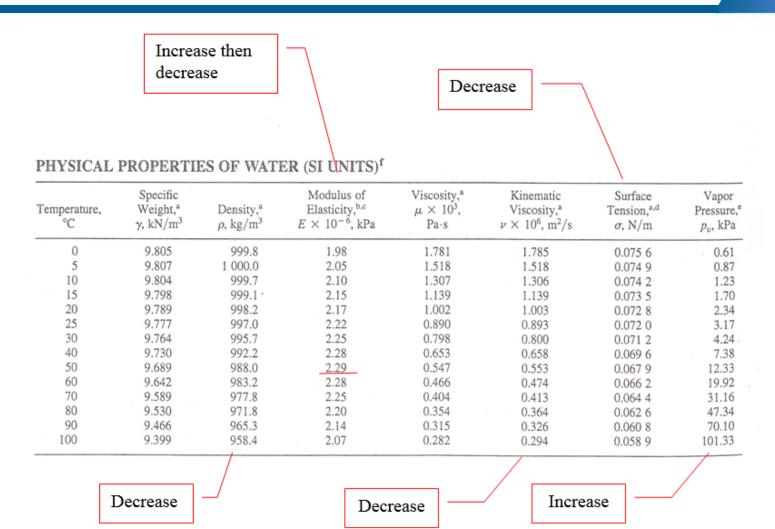
Liquids tend to evaporate

Vapor pressure = pressure at which liquids boil

- = <u>equilibrium partial pressure</u> which escaping liquid molecules will exert above any free surface
- ~ increases with temperature
- ~ The more volatile the liquid, the higher its vapor pressure.

 σ

(11) Surface energy and surface tension,


At boundaries between gas and liquid phase, <u>molecular attraction</u> introduce forces which cause the interface to behave like a membrane under tension.

$$\sigma = \frac{\text{(force)} \times \text{(distance)}}{\text{area}} = \frac{\text{work}}{\text{area}} = \frac{\text{force}}{\text{length}}$$

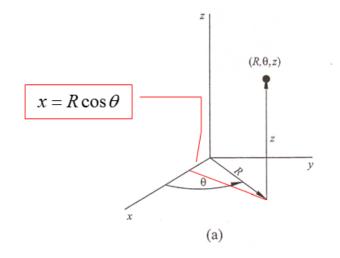
~ water: decrease with temperature

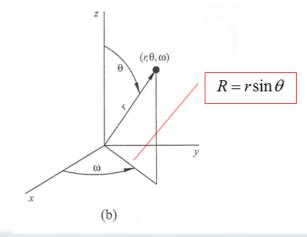
[Appendix 1] Coordinate Systems

- i) Cartesian (x, y, z)
- ii) Cylindrical (R, θ, z)

$$x = R\cos\theta$$

$$y = R \sin \theta$$


$$z = z$$


iii) Spherical (r, θ, ω)

$$x = r \sin \theta \cos \omega$$

$$y = r \sin \theta \sin \omega$$

$$z = r \cos \theta$$

[Appendix 2] Tensor

Scalar – quantity with magnitude only

Vector – quantity with magnitude and direction

Tensor – an order array of entities which is invariant under coordinate transformation, this includes scalars and vectors

Rank (order) of tensors – 3^p

0th order – 1 component, scalar (e.g., mass, length, pressure)

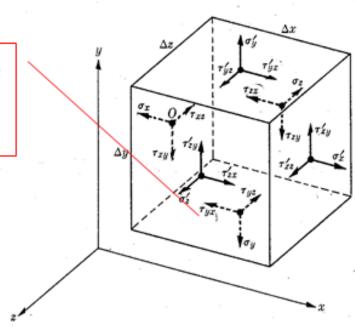
1st order - 3 components, vector (e.g., velocity, force, acceleration)

2nd order – 9 components, (e.g., stress, rate of strain, turbulent diffusion coeff.)

- Example of 2nd order tensor
 - ~ stress acting on a fluid element

$$\mathsf{Stress} \ \mathsf{tensor} = \begin{bmatrix} \sigma_{xx} \ \tau_{xy} \ \tau_{zz} \\ \tau_{yx} \ \sigma_{yy} \ \tau_{yz} \\ \tau_{zx} \ \tau_{zy} \ \sigma_{zz} \end{bmatrix}$$

 σ = normal stress,


 τ = shear stress

STRESS-STRAIN RELATIONS

 τ_{yx} = shear stress in xz - plane and in x - direction.

