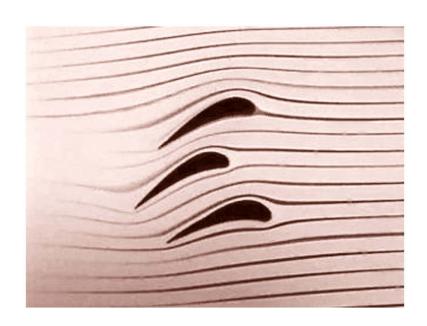
Chapter 2

Kinematics



Chapter 2 Kinematics

Contents

- 2.1 The Velocity Field
- 2.2 Steady versus Uniform motion
- 2.3 Flow Lines

Objectives

- Define methods of flow description
- Classify fluid motions
- Study kinematics of fluid

$$\sum \vec{F} = m\vec{a}$$

velocity, acceleration ~ vector quantities

 \vec{q}

 \vec{a}

Cartesian coordinates

 \mathcal{X}

 \mathcal{U}

 \mathcal{W}

 $a_x \quad a_y \quad a_z$

2.1.1 Lagrangian approach

- ~ coordinates of moving particles are represented as function of time
- ~ follow a particular particle through the flow field → path line

At
$$t = t_0$$
 coordinates (position) of a particle (a, b, c)

At t = t position of a particle (x, y, z)

$$x = f_1(a, b, c, t)$$

$$y = f_2(a, b, c, t)$$

Independent variables

$$z = f_3(a, b, c, t)$$

$$u = \frac{\partial x}{\partial t}$$

$$a_x = \frac{\partial u}{\partial t} = \frac{\partial^2 x}{\partial t^2}$$

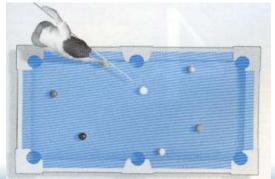
$$v = \frac{\partial y}{\partial t}$$

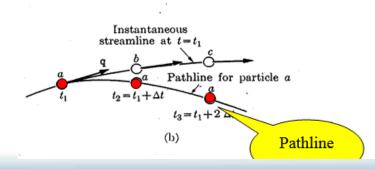
$$a_{y} = \frac{\partial v}{\partial t} = \frac{\partial^{2} y}{\partial t^{2}}$$

$$w = \frac{\partial z}{\partial t}$$

$$a_z = \frac{\partial w}{\partial t} = \frac{\partial^2 z}{\partial t^2}$$

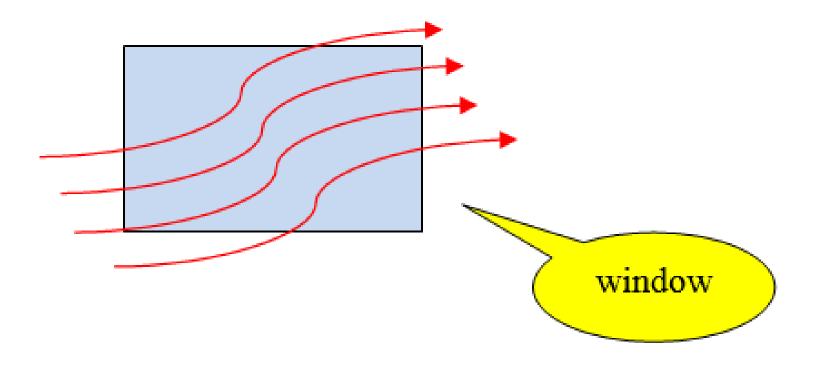
- ~ commonly used in the solid dynamics
- ~ convenient to identify a discrete particle, e.g. center of mass of spring mass system
- ~ cumbersome when dealing with a fluid as a continuum of particles
- → Due to deformation of fluid, we are not usually concerned with the detailed history of an individual particle, but rather with <u>interrelation of</u> <u>flow properties at individual points</u> in the flow field.





2.1.2 Eulerian method

- ~ observer fixes attention at <u>discrete points</u>
- ~ notes flow characteristics in the vicinity of a fixed point as particles pass by
- ~ focused on the fluid which passes through a control volume that is fixed in space
- ~ familiar framework in which most fluid problems are solved
- ~ instantaneous picture of the velocities and accelerations of every particle
 - → streamline
- ~ velocities at various points are given as function of time



$$\vec{q} = \vec{i}u + \vec{j}v + \vec{k}w$$

where $u = f_1(x, y, z, t)$

$$v = f_2(x, y, z, t)$$

Independent variables

$$w = f_3(x, y, z, t)$$

x, y, z, t = independent variables

$$\vec{i}$$
, \vec{j} , \vec{k} = unit vectors

2.1.3 Total Derivative

(1) Total change in velocity

= sum of partial derivatives of the four independent variables, x, y, z, t

$$x - \operatorname{dir} : du = \frac{\partial u}{\partial t} dt + \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy + \frac{\partial u}{\partial z} dz$$

total derivative:
$$\frac{du}{dt} = \frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} \frac{dx}{dt} + \frac{\partial u}{\partial y} \frac{dy}{dt} + \frac{\partial u}{\partial z} \frac{dz}{dt}$$

convective change due to translation

$$y - \operatorname{dir} : \frac{dv}{dt} = \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z}$$

$$z - \operatorname{dir} : \frac{dw}{dt} = \frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z}$$

(2) Total rate of density change of compressible fluid

$$\rho = \rho(x, y, z, t)$$

$$\frac{d\rho}{dt} = \frac{\partial\rho}{\partial t} + u\frac{\partial\rho}{\partial x} + v\frac{\partial\rho}{\partial y} + w\frac{\partial\rho}{\partial z} = \frac{\partial\rho}{\partial t} + u_j\frac{\partial\rho}{\partial x_i}$$

For incompressible fluid, $\frac{d\rho}{dt}=0$ For steady flow, $\frac{\partial\rho}{\partial t}=0$

Acceleration

$$a_{x} = \frac{du}{dt} = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = \frac{\partial u}{\partial t} + u_{j} \frac{\partial u}{\partial x_{j}}$$

$$a_{y} = \frac{dv}{dt} = \frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = \frac{\partial v}{\partial t} + u_{j} \frac{\partial v}{\partial x_{j}}$$

$$a_{z} = \frac{dw}{dt} = \frac{\partial w}{\partial t} + u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} = \frac{\partial w}{\partial t} + u_{j} \frac{\partial w}{\partial x_{j}}$$

Vector notation

$$\vec{a} = \vec{i}a_x + \vec{j}a_y + \vec{k}a_z$$

$$\vec{a} = \frac{d\vec{q}}{dt} = \frac{\partial \vec{q}}{\partial t} + (\vec{q} \cdot \nabla) \vec{q}$$
 local acceleration

convective acceleration

i) steady motion: no changes with time at fixed point ←→ unsteady motion

$$\frac{\partial \vec{q}}{\partial t} = 0 \rightarrow \text{local acceleration} = 0$$

ii) uniform motion: no changes with space ←→ non-uniform motion

$$(\vec{q} \cdot \nabla)\vec{q} = 0 \rightarrow \text{convective acceleration} = 0$$

♦ Vector differential operators: ∇ → "del" or "nabla"

$$\nabla = \frac{\partial}{\partial x}\vec{i} + \frac{\partial}{\partial y}\vec{j} + \frac{\partial}{\partial z}\vec{k}$$

Gradient:
$$\nabla f = grad \ f = \frac{\partial f}{\partial x}\vec{i} + \frac{\partial f}{\partial y}\vec{j} + \frac{\partial f}{\partial z}\vec{k}$$

Divergence:
$$\nabla \cdot \vec{q} = div \ \vec{q} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}$$

[Re] Vector product

i) dot product → scalar

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \phi$$

 ϕ = angle between the vectors

$$\vec{i} \cdot \vec{i} = \vec{j} \cdot \vec{j} = \vec{k} \cdot \vec{k} = 1 \quad (\cos 0^\circ = 1)$$

$$\vec{i} \cdot \vec{j} = \vec{j} \cdot \vec{k} = \vec{j} \cdot \vec{i} = \vec{k} \cdot \vec{j} = 0 \quad (\because \cos 90^\circ = 0)$$

ii) cross product → vector

$$\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \phi$$

Direction = perpendicular to the plane of \vec{a} and \vec{b} \rightarrow right-hand rule

$$\vec{q} \cdot \nabla = (\vec{i}u + \vec{j}v + \vec{k}w) \cdot (\vec{i}\frac{\partial}{\partial x} + \vec{j}\frac{\partial}{\partial y} + \vec{k}\frac{\partial}{\partial z})$$

$$= u\frac{\partial}{\partial x} + v\frac{\partial}{\partial y} + w\frac{\partial}{\partial z}$$

$$(\vec{q} \cdot \nabla) \ \vec{q} = \left(u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} + w \frac{\partial}{\partial z} \right) (\vec{i}u + \vec{j}v + \vec{k}w)$$

$$= \left(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \right) \vec{i}$$

$$+ \left(u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} \right) \vec{j}$$

$$+ \left(u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} \right) \vec{k}$$

$$\nabla^2 = \nabla \cdot \nabla = \left(\vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z} \right) \cdot \left(\vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z} \right)$$

$$= \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

$$\nabla^2 \phi = 0 \quad \to \quad \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0 \quad \to \text{Laplace Eq.}$$

$$grad\ (u+v) = \nabla (u+v) = \nabla u + \nabla v$$

$$div (\vec{u} + \vec{v}) = \nabla \cdot (\vec{u} + \vec{v}) = \nabla \cdot \vec{u} + \nabla \cdot \vec{v}$$

$$grad(uv) = \nabla(uv) = v\nabla u + u\nabla v$$

$$div (u\vec{v}) = \nabla \cdot (u\vec{v}) = \nabla u \cdot \vec{v} + u\nabla \cdot \vec{v}$$

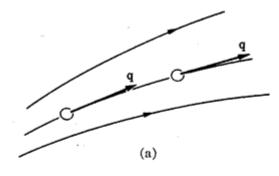
$$div \ grad \ u = \nabla \cdot \nabla u = \nabla^2 u$$

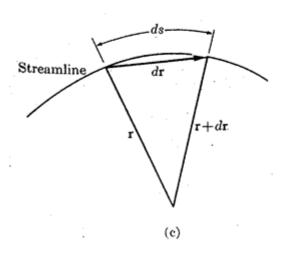
2.3.1 Flow lines

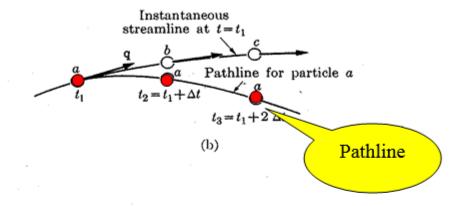
3 flow lines: streamline, path line, streak line

(1) streamline

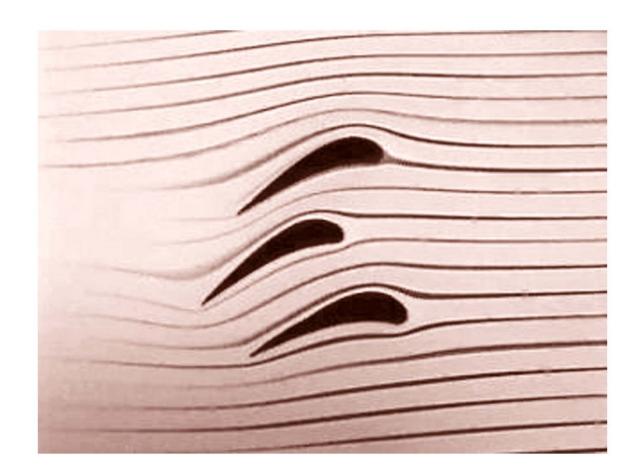
- = <u>imaginary line</u> connecting a series of points in space at a given instant in such a manner that all particles falling on the line at that instant have velocities whose vectors are <u>tangent to the line</u>
- = instantaneous curves which are everywhere tangent to the velocity vector
- = a line that is (at a given instant) tangent to the velocity at every point on it
- * stream tube = small imaginary tube bounded by streamlines
- * stream filament = if cross section of stream tube is infinitesimally small

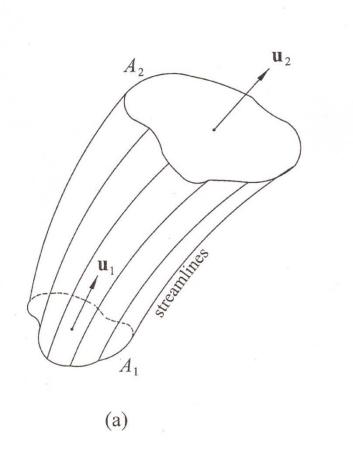


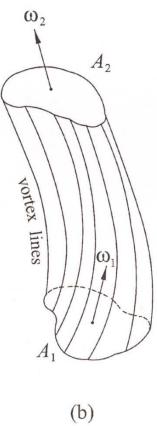


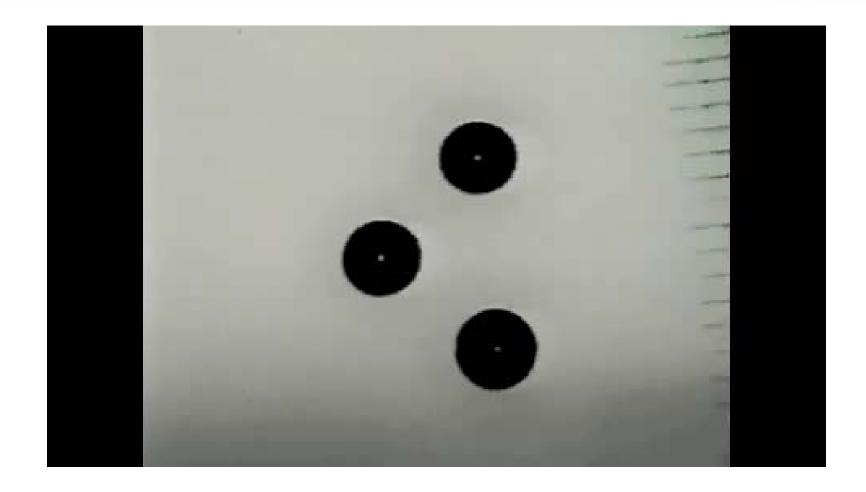


 $d\mathbf{r} = \mathbf{i} \ dx + \mathbf{j} \ dy + \mathbf{k} \ dz$ In limit $d\mathbf{r}/ds = \mathbf{n} = \text{unit}$ tangent vector $d\mathbf{r} = \mathbf{n} \ ds = \text{element}$ of length along streamline









(2) path line

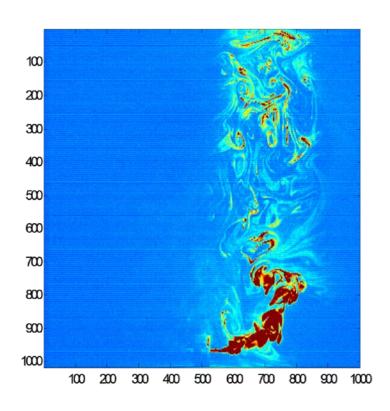
= trajectory of <u>a particle of fixed identity</u> as time passes

(3) streak line

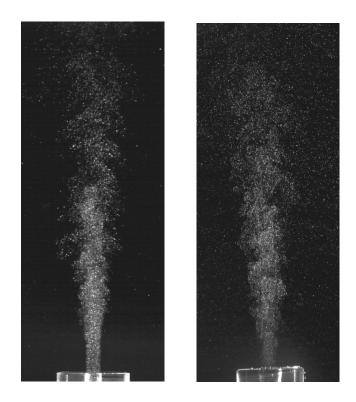
- = a line connecting <u>all the particles</u> that have passed successfully through <u>a particular given point</u> (injection point)
- = current location of all particles which have passed through a fixed point in space

[Ex] dye stream in water, smoke filament in air

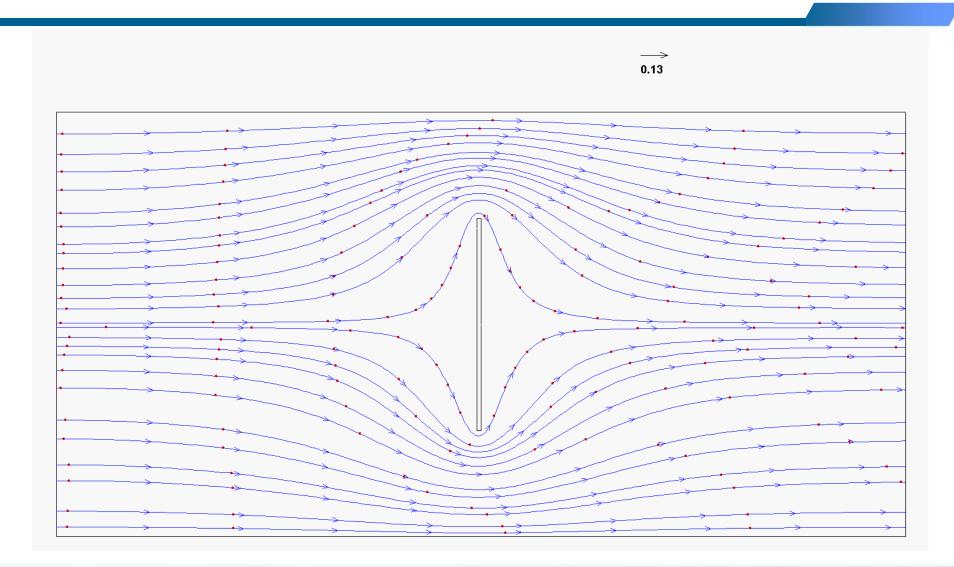
* For <u>steady</u> flow, streamline = path line = streak line

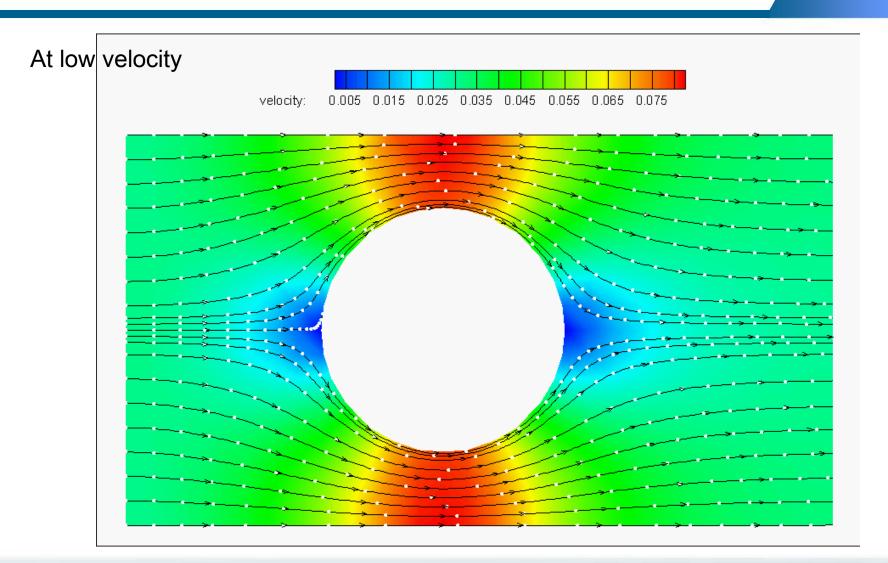


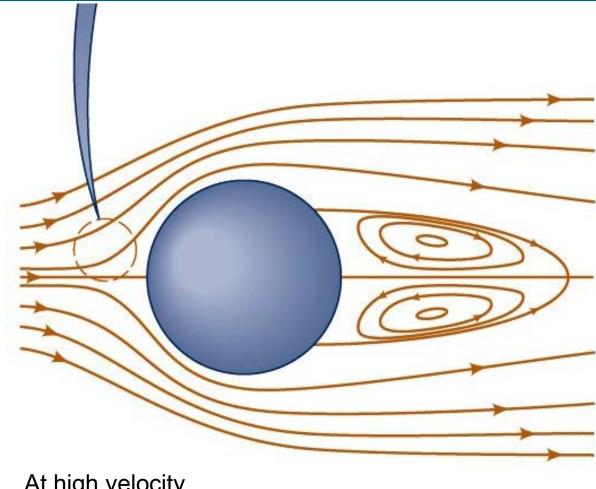
Streak line by LIF

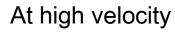


Path line by PIV

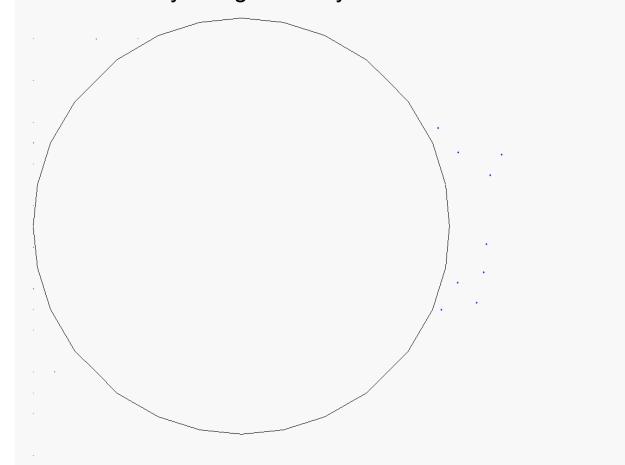


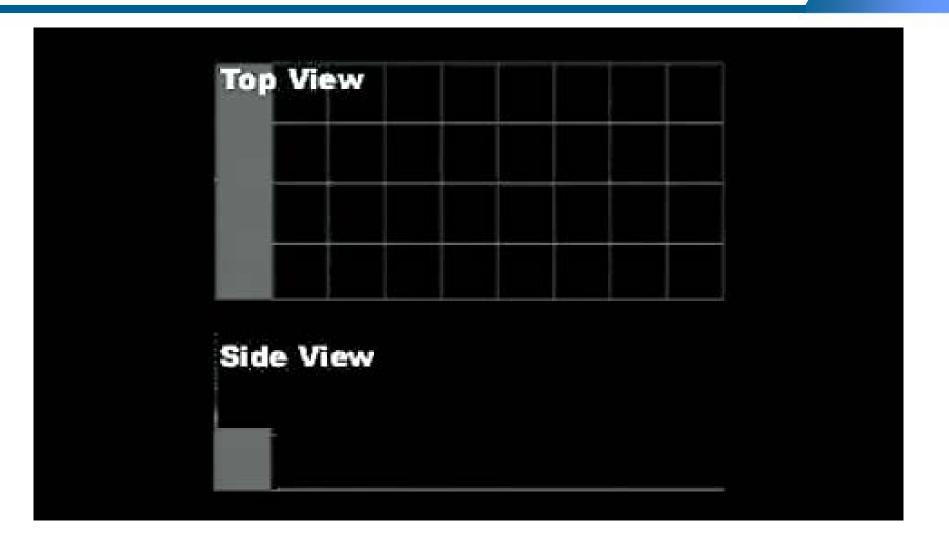




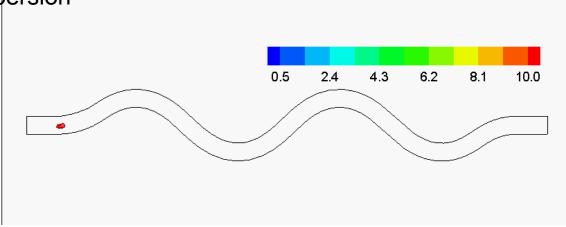


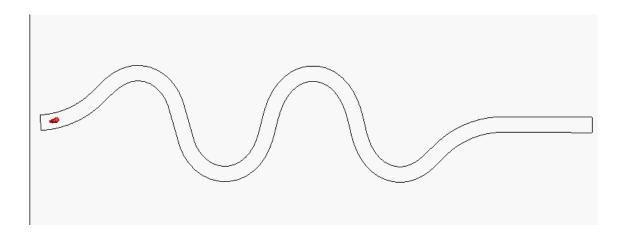
From low velocity to high velocity



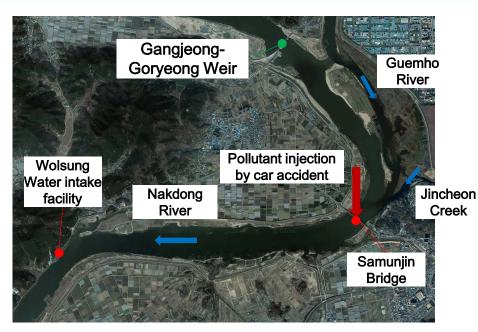


Particle dispersion



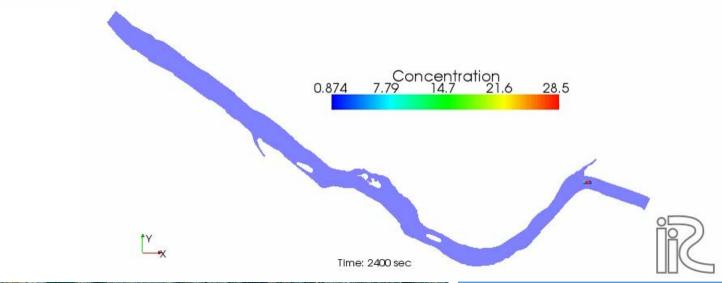


PDM-2D Results: Nakdong River



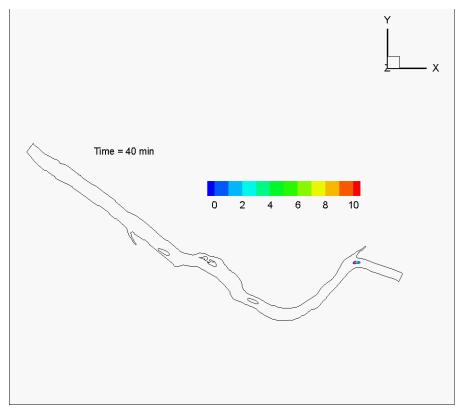
Study area	Gangjeong-Goryeong Weir ~ Dalsung Weir
Discharge	Nakdong River: 410.0 m ³ /s Guemho River: 64.5 m ³ /s Jincheon Creek: 6.9 m ³ /s
Pollutant type	Conservative pollutant
Mass	1 ton
No. of particles	5,000

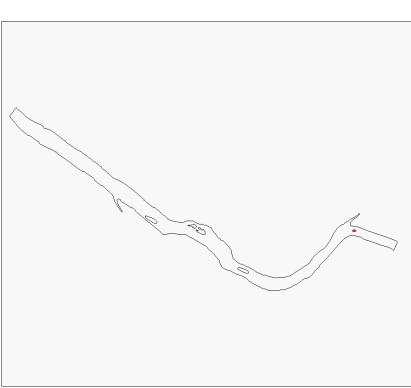
❖ PDM-2D Results: Han River



Island

Study area	Youngdong Bridge ~ Hangju Bridge
Discharge	Han River : 183.9 m ³ /s Jungnang Creek : 1.4 m ³ /s Anyang Creek : 2.2 m ³ /s
Pollutant type	Conservative pollutant
Mass	1 ton
No. of particles	5,000





No Tide With Tide

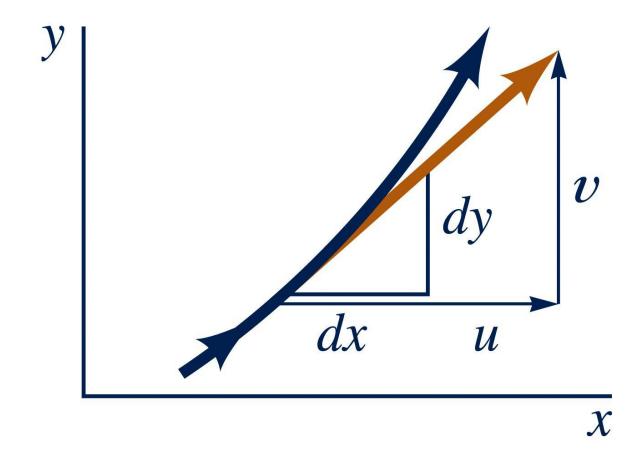
- How can we photo 3 lines?
 - (1) streamline: spread <u>bunch of reflectors</u> on the flow field, then take a instant shot
 - (2) path line: put only <u>one particle</u> on the flow field, then take long-time exposure
 - (3) streak line: take a instant shot of dye injecting from one slot of the dye tanks

2.3.2 Differential equations for flow lines

(1) Streamline

By virtue of definition of a streamline (velocity vector \vec{q} is tangent to the streamline), it's slope in the xy - plane, $\frac{dy}{dx}$, must be equal to that of the velocity, $\frac{v}{u}$.

$$\frac{dy}{dx} = \frac{v}{u}$$



By similarly treating the projections on the xz plane and on the yz plane

$$\frac{dz}{dx} = \frac{w}{u}; \quad \frac{dz}{dy} = \frac{w}{v}$$

$$\rightarrow \frac{dx}{u} = \frac{dy}{v} = \frac{dz}{w}$$

→ Integration of the differential equation for streamline yields equation of streamline. For 2-D Cartesian coordinates

$$\frac{dx}{u} = \frac{dy}{v} \to \frac{dy}{dx} = \frac{v}{u} \to v \, dx - u \, dy = 0$$

Vector form of equation of streamline

$$\vec{q} \times d\vec{r} = 0$$

$$\vec{q} = \vec{i}u + \vec{j}v + \vec{k}w$$

$$d\vec{r} = \vec{i} dx + \vec{j} dy + \vec{k} dz$$

$$= \vec{n} ds = \text{element of length along streamline}$$

$$\vec{q} \times d\vec{r} = \vec{i}vdz + \vec{j}wdx + \vec{k}udy - \vec{i}wdy - \vec{j}udz - \vec{k}vdx$$

$$= \vec{i} (vdz - wdy) + \vec{j} (wdx - udz) + \vec{k} (udy - vdx) = 0$$

(2) Path line

Since the particle is moving with the fluid at its local velocity

$$\frac{dx}{dt} = u; \quad \frac{dy}{dt} = v; \quad \frac{dz}{dt} = w$$

[App] Vector Products

(1) dot product → scalar

$$\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

(2) cross product → vector

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = (a_2b_3 - a_3b_2)\vec{i} + (a_3b_1 - a_1b_3)\vec{j} + (a_1b_2 - a_2b_1)\vec{k}$$

$$curl \ \vec{V} = \nabla \times \vec{V} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ u & v & w \end{vmatrix}$$

$$= \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z}\right)\vec{i} + \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x}\right)\vec{j} + \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right)\vec{k}$$

[Ex] Vorticity:
$$\xi = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$$
 3–D flow, $\xi = \nabla \times \vec{V}$

For irrotational flow, $\xi = 0$; $\nabla \times \vec{V} = 0$

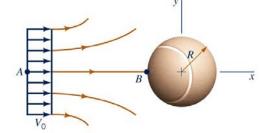
- $curl(u\vec{v}) = \nabla \times (u\vec{v}) = \nabla u \times \vec{v} + u \nabla \times \vec{v}$
- $curl grad u = \nabla \times \nabla u = 0$
- divcurl $\vec{u} = \nabla \cdot (\nabla \times \vec{u}) = 0$

Homework Assignment No. 2

Due: 1 week from today

1. The velocity of an inviscid, incompressible fluid as it steadily approaches the <u>stagnation point</u> at the leading edge of a sphere of radius *R* is

$$\vec{q} = u\vec{i} = u_s \left(1 + \frac{R^3}{x^3} \right) \vec{i}$$



What is the fluid acceleration at (a) x = -3R, (b) x = -2R, and (c) x = -R?

(d) When and $u_s = 2 \ m / s$ and $R = 3 \ cm$, what is the magnitude of the acceleration at x = -2R?

2. The velocity field in a flow system is given by

$$\vec{q} = 5\vec{i} + (x + y^2)\vec{j} + 3xy\vec{k}$$

What is the fluid acceleration (a) at (1, 2, 3) and (b) at (-1, -2, -3)?

3. A nozzle is shaped such that the axial-flow velocity increases linearly from 2 to 18 m/s in a distance of 1.20 m. What is the convective acceleration (a) at the inlet and (b) at the exit of the nozzle?

4. Determine the streamline for the two-dimensional steady flow given by

$$\vec{q} = \frac{V_0}{I}(-x\vec{i} + y\vec{j})$$

where V_0 and /are constants. Plot it.

