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Chapter 4 Continuity, Energy, and Momentum Equations

Contents

4.1 Conservation of Matter in Homogeneous Fluids

4.2 The General Energy Equation

4.3 Linear Momentum Equation for Finite Control Volumes

4.4 The Moment of Momentum Equation for Finite Control Volumes

Objectives

- Apply finite control volume to get integral form of continuity, energy, and

momentum equations

- Compare integral and point form equations

- Derive the simplified equations for continuity, energy, and momentum

equations
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Particle and Control-Volume Concepts

Infinitesimal elements and control volumes
 Each of the observational laws of mass, heat, and momentum transport

may be formulated in the Eulerian sense of focusing attention on a fixed

point in space.

 There are two basic method of arriving the Eulerian equation.

• Material method (Particle approach)

• Control volume method:

 Finite control volume

 Differential control volume

• If fluid is considered as a continuum, end result of either method is

identical.
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Particle and Control-Volume Concepts

 Material method (Particle approach)

• Describe flow characteristics at a fixed point (x, y, z) by observing

the motion of a material particle of a infinitesimal mass

• Laws of conservation of mass, momentum, and energy can be

stated in the differential form, applicable at a point.

• Newton's 2nd law

• Material-particle approach is used to develop a stress-strain

relationship in Ch. 5.

dF dma=
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Particle and Control-Volume Concepts

 Control volume method

① Finite control volume – arbitrary control volume

② Differential (infinitesimal) control volume – parallelepiped control volume 

[Re] Control volume

- fixed volume which consists of the same fluid particles and whose 

bounding surface moves with the fluid
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Particle and Control-Volume Concepts

 Finite control volume method

• Frequently used for 1D analysis (Ch. 4)

• Gross descriptions of flow

• Analytical formulation is easier than differential control volume 

method

• Integral form of equations for conservation of mass, momentum, and 

energy

• Continuity equation:  conservation of mass

0
CV CS

dV q dA
t
ρ ρ∂

+ ⋅ =
∂∫ ∫
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Particle and Control-Volume Concepts
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Particle and Control-Volume Concepts

 Differential control volume method

• Concerned with a fixed differential control volume (=∆x∆y∆z)

of fluid

• 2D or 3D analysis (Ch. 6)

( ) ( )d dF mq x y zq
dt dt

ρ∆ = ∆ = ∆ ∆ ∆
  

• ∆x, ∆y, ∆z become vanishingly small

• Point form of equations for conservation of mass, momentum,

and energy
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Particle and Control-Volume Concepts
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4.1 Conservation of Matter in Homogeneous Fluids
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4.1 Conservation of Matter in Homogeneous Fluids

4.1.1 Finite control volume method-arbitrary control volume
• Consider an arbitrary control volume

• Although control volume remains fixed, mass of fluid originally enclosed 

(regions A+B) occupies the volume within the dashed line (regions B+C).

• Since mass m is conserved:

( ) ( ) ( ) ( )A B B Ct t t dt t dt
m m m m

+ +
+ = +

( ) ( ) ( ) ( )CAB B tt dt t t dt
mmm m

dt dt
+ +

−−
=

(4.1)

(4.2)
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4.1 Conservation of Matter in Homogeneous Fluids

• LHS of Eq. (4.2) = time rate of change of mass in the original control

volume in the limit

( ) ( ) ( ) ( )B B Bt dt t
CV

m m m
dV

dt t t
ρ+

− ∂ ∂
≈ =

∂ ∂ ∫ (4.3)

dVwhere = volume element

• RHS of Eq. (4.2)

= net flux of matter through the control surface

= flux in – flux out

1 2n nq dA q dAρ ρ= −∫ ∫
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4.1 Conservation of Matter in Homogeneous Fluids

where = component of velocity vector normal to the surface

of cosqCV φ= 

( ) 1 2n nCV CS CS
q dA q dAdV

t
ρ ρρ∂

∴ = −
∂ ∫ ∫ ∫ (4.4)

※ Flux (= mass/time) is due to velocity of the flow.

• Vector form is

( )
CV CS

q dAdV
t

ρρ∂
= − ⋅

∂ ∫ ∫




 (4.5)

nq
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4.1 Conservation of Matter in Homogeneous Fluids

where =  vector differential area pointing in the outward direction over 

an enclosed control surface

dA


cosq dA q dA φ∴ ⋅ =


 

positive for an outflow from cv

negative for inflow into cv,

,  90
90  180

φ
φ

 ≤=  ≤ ≤



 

If fluid continues to occupy the entire control volume at subsequent times 

→ time independent

LHS: ( )
CV CV

dVdV
t t

ρρ∂ ∂
⇒

∂ ∂∫ ∫ (4.5a)
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4.1 Conservation of Matter in Homogeneous Fluids

0
CV CS

dV q dA
t
ρ ρ∂

+ ⋅ =
∂∫ ∫







Eq. (4.4) becomes

(4.6)

→ General form of continuity equation→ Integral form

[Re] Differential form

Use Gauss divergence theorem

iV A
i

F dV FdA
x
∂

=
∂∫ ∫
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4.1 Conservation of Matter in Homogeneous Fluids

Transform surface integral of Eq. (4.6) into volume integral

( )
CS CV

q dA q dVρ ρ⋅ = ∇⋅∫ ∫


 



Then, Eq. (4.6) becomes

( ) 0
CV

q dV
t
ρ ρ∂ +∇⋅ = ∂ ∫



Eq. (4.6a) holds for any volume only if the integrand vanishes at every point.

(4.6b)

(4.6a)

( ) 0q
t
ρ ρ∂
+∇⋅ =

∂


→ Differential (point) form
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4.1 Conservation of Matter in Homogeneous Fluids

Simplified form of continuity equation
 Steady flow of a compressible fluid

0
CV

dv
t
ρ∂

=
∂∫

Therefore, Eq. (4.6) becomes

0
CS

q dAρ ⋅ =∫






(4.7)

 Incompressible fluid (for both steady and unsteady conditions)

const. 0, 0d
t dt
ρ ρρ ∂

= → = =
∂
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4.1 Conservation of Matter in Homogeneous Fluids

0
CS

q dA⋅ =∫






(4.8)

Therefore, Eq. (4.6) becomes
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4.1 Conservation of Matter in Homogeneous Fluids

0c cuc D
t x x

∂ ∂ ∂ + =− ∂ ∂ ∂ 
c uc cD
t x x x

∂ ∂ ∂ ∂ → + =  ∂ ∂ ∂ ∂ 

[Cf] Non-homogeneous fluid mixture

• Conservation of mass equations for the individual species

→ Advection-diffusion equation

= conservation of mass equation + mass flux equation due to advection 

and diffusion 

0c q
t x
∂ ∂

+ =
∂ ∂

cq uc D
x
∂

= −
∂
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4.1 Conservation of Matter in Homogeneous Fluids

4.1.2 Stream - tube control volume analysis for steady flow

• Steady flow:  There is no flow across the 

longitudinal boundary of the stream tube.

• Eq. (4.7) becomes

(4.9)

1 1 1 2 2 2 0q dA q dA q dAρ ρ ρ⋅ = − + =∫






const.qdAρ =

Flux = 0
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where dQ = volume rate of flow

4.1 Conservation of Matter in Homogeneous Fluids

If density = const.

1 1 2 2q dA q dA dQ= = (4.10)

 For flow in conduit with variable density

qdA
V

A
= ∫ → average velocity

→ average density 
dQ

Q
ρ

ρ = ∫

1 1 1 2 2 2V A V Aρ ρ= (4.11)
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4.1 Conservation of Matter in Homogeneous Fluids

 For a branching conduit

0q dAρ ⋅ =∫






1 2 3
1 1 1 2 2 2 3 3 3 0

A A A
q dA q dA q dAρ ρ ρ− + + =∫ ∫ ∫

1 1 1 2 2 2 3 3 3V A V A V Aρ ρ ρ= + (4.12)
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4.1 Conservation of Matter in Homogeneous Fluids

 At the centroid of the control volume, 

 rate of mass flux across the surface 

perpendicular to x is 

 Equation of Continuity

Use Infinitesimal (differential) control volume method 

, , ,u v wρ
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4.1 Conservation of Matter in Homogeneous Fluids

net mass flux across the surface perpendicular to y

( )flux in
2

u dx dydzu
x
ρ

ρ=
∂ 

− 
∂ 

( )flux out
2

u dx dydzu
x
ρ

ρ=
∂ 

+ 
∂ 

( )
net flux = flux in flux out

u dxdydz
x
ρ

−
∂

= −
∂

( )v dydxdz
y
ρ∂

= −
∂

net mass flux across the surface perpendicular to z ( )w dzdxdy
z
ρ∂

= −
∂

Time rate of change of mass inside the c.v. ( )dxdydz
t

ρ∂
=

∂
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4.1 Conservation of Matter in Homogeneous Fluids

(A1)

Time rate of change of mass inside = sum of three net rates 

( ) ( ) ( ) ( )dxdydz u v w dxdydz
t x y z

ρ ρ ρ ρ∂ ∂ ∂ ∂ 
= − + + ∂ ∂ ∂ ∂ 

By taking limit dV = dxdydz

( ) ( ) ( ) ( )u v w q div q
t x y z

ρ ρ ρρ ρ ρ
∂ ∂ ∂∂

− = + + = ∇ ⋅ =
∂ ∂ ∂ ∂

 

0q
t
ρ ρ∂

+ ∇ ⋅ =
∂



→ point (differential) form of Continuity Equation (the same as Eq. 4.6b)
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4.1 Conservation of Matter in Homogeneous Fluids

[Re] ( ) ( ) ( ) ( )u v w q div q
x y z
ρ ρ ρ

ρ ρ
∂ ∂ ∂

+ + = ∇ ⋅ =
∂ ∂ ∂

 

By the way, 

q q qρ ρ ρ∇⋅ = ⋅∇ + ∇⋅
  

Thus, (A1) becomes

0q q
t
ρ ρ ρ∂

+ ⋅∇ + ∇⋅ =
∂

  (A2)
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4.1 Conservation of Matter in Homogeneous Fluids

1) For incompressible fluid

0 ( const.)d
dt
ρ ρ= =

0dq
t dt
ρ ρρ∂

→ + ⋅∇ = =
∂



Therefore Eq. (A2) becomes

0 0q qρ ∇⋅ = → ∇⋅ =
 

0u v w
x y z
∂ ∂ ∂

+ + =
∂ ∂ ∂

In scalar form, 

(A3)

(A4)

→ Continuity Eq. for 3D incompressible fluid
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4.1 Conservation of Matter in Homogeneous Fluids

For 2D incompressible fluid,

0u v
x y
∂ ∂

+ =
∂ ∂

2) For steady flow,

0
t
ρ∂

=
∂

Thus, (A1) becomes

0q q qρ ρ ρ∇ ⋅ = ⋅∇ + ∇⋅ =
  

(4.13)
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4.2 The General Energy Equation

4.2.1 The 1st law of thermodynamics 

 The 1st law of thermodynamics:  

The difference between the heat added to a system of masses and the 

work done by the system depends only on the initial and final states of the 

system (→ change in energy).

→ Conservation of energy
Q W

∆E
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where  δQ = heat added to the system from 

surroundings

δW = work done by the system on its surroundings

δΕ = increase in energy of the system

4.2 The General Energy Equation

Q W dEδ δ− = (4.14)
Q W

∆E
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4.2 The General Energy Equation

[Re]

• property of a system:  position, velocity, pressure, temperature, mass, 

volume

• state of a system:  condition as identified through properties of the 

system

Consider time rate of change

Q W dE
dt dt dt
δ δ

− = (4.15)
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 Energy

Consider e = energy per unit mass = E/mass
eu = internal energy associated with fluid temperature = u 
ep = potential energy per unit mass = gh

where h = local elevation of the fluid

eq = kinetic energy per unit mass = 

 Work

Wpressure = work of normal stresses acting on the system boundary

Wshear = work of tangential stresses done at the system boundary 

on adjacent external fluid in motion

Wshaft = shaft work done on a rotating element in the system

4.2 The General Energy Equation

2

2
q
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4.2 The General Energy Equation

enthalpy
pu
ρ

+ =

2

2u p q
qe e e e u gh= + + = + + (4.16)

• Internal energy

= activity of the molecules comprising the substance

= force existing between the molecules

~ depend on temperature and change in phase
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4.2 The General Energy Equation

(4.15)

4.2.2 General energy equation 

Q W dE
dt dt dt
δ δ

− =

Consider work done

pressure shaft shearW W WW
dt dt dt dt

δ δ δδ
= + + (4.15a)

pressureW
dt

δ
= net rate at which work of pressure is 

done by the fluid on the surroundings

= work fluxout – work fluxin

( )
CS

p q dA⋅= ∫
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4.2 The General Energy Equation
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p = pressure acting on the surroundings = F/A = F/ L2

4.2 The General Energy Equation

positive for outflow into CV

negative for inflow

q dA

⋅ = 






3 /q dA Q L t⋅ = =




( )
3

2 / /F Lp FL t E tq dA
L t

= = =⋅




Thus, (4.15a) becomes

( ) shaft shear
CS

W WW p q dA
dt dt dt

δ δδ
= + +⋅∫







(4.15b)
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= total rate change of stored energy

= net rate of energy flux through C.V.

4.2 The General Energy Equation

Now, consider energy change term

dE
dt

+ time rate of change inside C.V.

( ) ( )
CS CV

e e dVq dA
t

ρ ρ∂
= +⋅

∂∫ ∫






(4.15c)

( )/ ; /e E mass mass timeq dAρ= =⋅




( ) /e E tq dAρ =⋅
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4.2 The General Energy Equation

Substituting (4.15b) and (4.15c) into Eq. (4.15) yields

( )shaft shear
CS

WQ W p q dA
dt dt dt

δδ δ
− − − ⋅∫







( ) ( )
CS CV

e e dVq dA
t

ρ ρ∂
= +⋅

∂∫ ∫






shaft shearWQ W
dt dt dt

δδ δ
− −

( ) ( )
CS CV

p e e dVq dA
t

ρ ρ
ρ

∂ += +⋅  ∂ ∫ ∫






(4.16)

(4.17)
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Assume potential energy ep = gh (due to gravitational field of the earth) 

Then 

Then, Eq. (4.17) becomes

4.2 The General Energy Equation

2

2
qe u gh= + +

( )
2

2

shaft shear

CS CV

W WQ
dt dt dt

p q e dVu gh q dA
t

δ δδ

ρ ρ
ρ

− −

  ∂
= ++ + + ⋅  ∂ 
∫ ∫







(4.17)
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4.2 The General Energy Equation

 Application:  generalized apparatus 

At boundaries normal to flow lines → no shear 

0shearW→ = (4.18)

( )
2

2
shaft

CS CV

WQ p q e dVu gh q dA
dt dt t

δδ ρ ρ
ρ

  ∂
− = ++ + + ⋅  ∂ 

∫ ∫






For steady motion, 

(4.19)

(4.20)( )
2

2
shaft

CS

WQ p qu gh q dA
dt dt

δδ ρ
ρ

 
− = + + + ⋅ 

 
∫
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4.2 The General Energy Equation



42/87

4.2 The General Energy Equation

 Effect of friction 

• This effect is accounted for implicitly.

• This results in a degradation of mechanical energy into heat which may 

be transferred away (Q, heat transfer), or may cause a temperature 

change → modification of internal energy.

• Thus, Eq. (4.20) can be applied to both viscous fluids and non-viscous 

fluids (ideal frictionless processes).
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4.2 The General Energy Equation

4.2.3 1 D Steady flow equations 

For flow through conduits, properties are uniform normal to the flow direction. 

→ one-dimensional steady flow

Integrated form of Eq. (4.20) = ② -①

2 2

2 2
shaftWQ p V p VQ Qu gh u gh

dt dt
δδ ρ ρ

ρ ρ
   

− = −+ + + + + +   
   ② ①

( )
2

2

shaft

CS

WQ
dt dt

p qu gh q dA

δδ

ρ
ρ

− =

 
+ + + ⋅ 

 
∫
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4.2 The General Energy Equation

2

where average kinetic energy per unit mass
2

V
=

( )
1

mass flow rate into CV1:Section Qq dAρ ρ= − =⋅∫




( )
2

mass flow from CV2:Section Qq dAρ ρ= =⋅∫




QρDivide by    (mass/time)

2 2

2 2
shaftWheat transfer p V p Vu gh u gh

mass mass ρ ρ
   

− = −+ + + + + +   
   ② ①

M Q dtρ=
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 Energy Equation for 1-D steady flow:  Eq. (4.21) 

• use average values for p, γ, h, u, and V at each flow section

• use Ke (energy correction coeff.) to account for non-uniform 

velocity distribution over flow cross section

4.2 The General Energy Equation

Divide by g
2 2

2 2
shaftWheat transfer u p V u p Vh h

weight weight g g g gγ γ
   

− = −+ + + + + +   
   ② ①

(4.21)
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4.2 The General Energy Equation

---- kinetic energy/time 2 2

2 2eK V Q q dQρ ρ
= ∫

21
2

mV
t

=

2

2

2 1

2

e

q dQ
K

V Q

ρ

ρ= ≥
∫

2 2
2 1

2 2
shaft

e e

Wheat transfer u up V p Vh K h K
weight weight gg gγ γ

    −
− = − ++ + + +   

   ② ①

(4.22)

(4.23)
eK = 2, for laminar flow (parabolic velocity distribution) 

1.06, for turbulent flow (smooth pipe)
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For a fluid of uniform density γ

4.2 The General Energy Equation

(4.24)

→ unit:  m (energy per unit weight)

For viscous fluid; 

1 2

2 1
L

heat transfer u u H
weight g −

−
− + =

→ loss of mechanical energy

~ irreversible in liquid

1 2

2 2
1 1 2 2 2 1

1 22 2
shaft

e e

Wp V p V heat transfer u uh K h K
g g weight weight gγ γ

−
+ + = + + + − +
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where  H1 , H2 = weight flow rate average values of total head 

where  ∆HM = shaft work transmitted from the system to the outside 

4.2 The General Energy Equation

Then, Eq. (4.24) becomes

1 2 1 2

2 2
1 1 2 2

1 22 2e e M L
p V p Vh K h K H H

g gγ γ −
+ + = + + + ∆ + ∆ (4.24a)

1 21 2 M LH H H H
−

= + ∆ + ∆ (4.24b)
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 Bernoulli Equation

Assume 

① ideal fluid → friction losses are negligible

② no shaft work → 

③ no heat transfer and internal energy is constant → 

4.2 The General Energy Equation

0MH∆ =

1 2
0LH

−
∆ =

1 2

2 2
1 1 2 2

1 22 2e e
p V p Vh K h K

g gγ γ
+ + = + +

1 2H H=

(4.25)
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If Ke1 = Ke2 = 1, then Eq. (4.25) reduces to

4.2 The General Energy Equation

2 2
1 1 2 2

1 22 2
p V p VH h h

g gγ γ
= + + = + + (4.26)

Pressure head
work Potential head

Velocity head

~ total head along a conduct is constant
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1) Energy (total head) line (E.L) ~ above datum

2) Hydraulic (piezometric head) grade line (H.G.L.) 

= above datum

4.2 The General Energy Equation

 Grade lines

H

p h
γ

 + 
 

For flow through a pipe with a constant diameter
2 2

1 2
1 2 2 2

V VV V
g g

= → =
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4.2 The General Energy Equation
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4.2 The General Energy Equation

1) If the fluid is real (viscous fluid) and if no energy is being added, then 

the energy line may never be horizontal or slope upward in the direction 

of flow.

2) Vertical drop in energy line represents the head loss or energy 

dissipation.
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4.3.1 Momentum Principle
 The momentum equation can be derived from Newton's 2nd law of 

motion

= boundary (surface) forces:  normal to boundary - pressure, 

tangential to boundary - shear, 

body forces - force due to gravitational or magnetic fields, 

4.3 Linear Momentum Equation for Finite Control Volumes

(4.27)
( )d mqdq dMF ma m

dt dt dt
= = = =










M =


mq=
linear momentum vector

F =


external force 

pF


sF


bF
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where = body force per unit mass

4.3 Linear Momentum Equation for Finite Control Volumes

p s b
dMF F F
dt

+ + =


  

( ),b bCV
F f dvρ= ∫


bf

(4.28)
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4.3.2 The general linear momentum equation

Consider change of momentum

= total rate of change of momentum 

= net momentum flux across the CV boundaries 

+ time rate of increase of momentum within CV

where = momentum flux = 

= vector unit area pointing outward over the control surface

4.3 Linear Momentum Equation for Finite Control Volumes

dM
dt



( )
CS CV

q q dVq dA
t

ρ ρ∂
= +⋅

∂∫ ∫


 




(4.29)

( )q q dAρ ⋅




 velocity mass per time×

dA
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4.3 Linear Momentum Equation for Finite Control Volumes
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4.3 Linear Momentum Equation for Finite Control Volumes

Substitute (4.29) into (4.28)

( )p s b CS CV
F F F q q dVq dA

t
ρ ρ∂

+ + = +⋅
∂∫ ∫

  



 





(4.30)

For steady flow and negligible body forces

( )p s CS
F F q q dAρ+ = ⋅∫
 








(4.31)

 Eq. (4.30)

• It is applicable to both ideal fluid systems and viscous fluid systems 

involving friction and energy dissipation.

• It is applicable to both compressible fluid and incompressible fluid.



59/87

4.3 Linear Momentum Equation for Finite Control Volumes

• Combined effects of friction, energy loss, and heat transfer appear 

implicitly in the magnitude of the external forces, with corresponding 

effects on the local flow velocities.

• Knowledge of the internal conditions is not necessary.

• We can consider only external conditions.
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4.3 Linear Momentum Equation for Finite Control Volumes

4.3.3 Inertial control volume for a generalized apparatus
• Three components of the forces

( ). :
x x xp s b CS CV

x dir F F F u u dVq dA
t

ρ ρ∂
− + + = +⋅

∂∫ ∫
  







( ). :
y y yp s b CS CV

y dir F F F v v dVq dA
t

ρ ρ∂
− + + = +⋅

∂∫ ∫
  







( ). :
z z zp s b CS CV

z dir F F F w w dVq dA
t

ρ ρ∂
− + + = +⋅

∂∫ ∫
  







(4.32)



61/87

4.3 Linear Momentum Equation for Finite Control Volumes

 For flow through generalized apparatus

2 1
. :

x x xp s b CV
x dir F F F u dQ u dQ u dV

t
ρ ρ ρ∂

− + + = − +
∂∫ ∫ ∫

  

• For 1D steady flow, 

0
CV

q dV
t

ρ∂
=

∂ ∫
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4.3 Linear Momentum Equation for Finite Control Volumes

• Velocity and density are constant normal to the flow direction. 

( ) ( )2 1
.:

x x xp s b x x xx dir F F F F V Q V Qρ ρ− + + = = −∑
  

1 1 2 2 (4.12)Q Q Qρ ρ ρ= =

( ) ( )2 12 12 2 1 1 out inx xx xx x V VV VV Q V Q Q Qρ ρ ρ ρ −−= − = =

( ) ( )2 1
.: y yy V Q V Qy dir F ρ ρ− = −∑

( ) ( )2 1.: z z zz dir F V Q V Qρ ρ− = −∑

where V = average velocity in flow 

direction
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4.3 Linear Momentum Equation for Finite Control Volumes

If velocity varies over the cross section, then introduce momentum flux 

coefficient

( ) ( )mq K V VAq dAρ ρ=⋅∫








mq dQ K V Qρ ρ=∫




m

q dQ
K

V Q

ρ

ρ
= ∫





• Non-uniform velocity profile
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where 

V = magnitude of average velocity over cross section = Q/A
= average velocity vector 

Km = momentum flux coefficient  ≥ 1 

= 1.33 for laminar flow (pipe flow)

1.03-1.04 for turbulent flow (smooth pipe)

4.3 Linear Momentum Equation for Finite Control Volumes

V


( ) ( )2 1x m x m xF K V Q K V Qρ ρ= −∑

( ) ( )2 1m y m yy K V Q K V QF ρ ρ= −∑

( ) ( )2 1z m z m zF K V Q K V Qρ ρ= −∑
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4.3 Linear Momentum Equation for Finite Control Volumes

[Cf] Energy correction coefficient

2

2

2

e

q dQ
K

VQ

ρ

ρ=
∫
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4.3 Linear Momentum Equation for Finite Control Volumes

A large tank mounted on rollers is 

filled with water to a depth of 16 ft

above a discharge port.  At time t = 

0, the fast-acting valve on the 

discharge nozzle is opened. 

Determine depth h,  discharge rate 

Q, and force F necessary to keep 

the tank stationary at t = 50 sec .

[Example 4-4] Continuity, energy, and linear momentum with unsteady flow
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4.3 Linear Momentum Equation for Finite Control Volumes

Continuity, energy, and linear momentum equations

0
CV CS

dV q dA
t
ρ ρ∂

+ ⋅ =
∂∫ ∫







(4.6)

( )
2

2

shaft shear

CS CV

W WQ
dt dt dt

p q e dVu gh q dA
t

δ δδ

ρ ρ
ρ

− −

  ∂
= ++ + + ⋅  ∂ 
∫ ∫







(4.17)

( )p s b CS CV
F F F q q dVq dA

t
ρ ρ∂

+ + = +⋅
∂∫ ∫

  



 





(4.30)
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i) Use integral form of continuity equation, Eq. (4.6) 

ii) Energy equation, Eq. (4.17)

~ no shaft work 

~ heat transfer and temperature changes due to friction are negligible 

4.3 Linear Momentum Equation for Finite Control Volumes

(because no inflow across the Section 1)

1 2n nCV
dV q dA q dA

t
ρ ρ ρ∂

= −
∂ ∫ ∫ ∫

1 1, 0ndV A dh q dAρ= =

1 2 20

h
A dh V A

t
ρ ρ∂

∴ = −
∂ ∫

1 2 2
dhA V A
dt

= − (A)
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e = energy per unit mass = 

4.3 Linear Momentum Equation for Finite Control Volumes

Q
dt
δ shaftW

dt
δ

− shearW
dt

δ
−

( )
2

2CS CV

p q e dVu gh q dA
t

ρ ρ
ρ

  ∂
= ++ + + ⋅  ∂ 
∫ ∫







I II
2

2
qu gh+ +

I = ( )
2

2CS

p qu gh q dAρ
ρ

 
+ + + ⋅ 

 
∫







2 2

2 2 1 1
2 12 2

p q p qV A V Au gh u ghρ ρ
ρ ρ

   
= −+ + + + + +   
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4.3 Linear Momentum Equation for Finite Control Volumes

II =

( )
2

2 2 1
2

0
2

p q V A Vu gh ρ
ρ

 
= ≈+ + + 
 

1A dh

2

2CV

qe dV u gh
t t

ρ∂ ∂
= + +

∂ ∂∫ CV
dVρ

 
 
 

∫

∵ nearly constant in the tank

except near the nozzle

( )1 0

h
A dhu gh

t
ρ ∂

= +
∂ ∫

( )
2

2 2 1 0
2

0
2

hp q V A A dhu gh u gh
t

ρ ρ
ρ

  ∂
∴ = ++ + + +  ∂ 

∫
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4.3 Linear Momentum Equation for Finite Control Volumes

Assume 2 2const. , 0 , 0 (datum)atmp p hρ = = = =

2
2

2 2 2 2 1 10
2

V dh dhuV A V A uA A gh
dt dt

= + + + (B)

Substitute (A) into (B)

2 20 uV A= ( )
2

2
2 2 2 22

V V A u V A+ + − ( )2 2gh V A+ −

2
2

2 2 2 22
V V A ghV A∴ =

2 2V gh= (C)

1 2 2
dhA V A
dt

= −
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4.3 Linear Momentum Equation for Finite Control Volumes

Substitute (C) into (A)

2 12 dhA gh A
dt

= −

2

1

2dh A gdt
Ah

= −

Integrate 

0 0 0

1
12 2
20

1

2 2
hh t h

h h h

dh A gdt h dh hAh
−  = − =   

∫ ∫ ∫
21

22
0

1

2
2

gAh h t
A

 
= − 
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4.3 Linear Momentum Equation for Finite Control Volumes

( )
2

20.1 32.216
20 2

h t
 = − 
 

( )24 0.0201t= −

( )2
At 50sec , 8.984 0.0201 50t h ft= = =− ×

( )( )2 2 2 24.05 fps32.2 8.98V gh= = =

( ) ( )
2 2 24.05 0.1 2.405 cfsQ VA= = =
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iii) Momentum equation, Eq. (4.30)

II = Time rate of change of momentum inside CV is negligible 

if tank area is large compared to the nozzle area 

4.3 Linear Momentum Equation for Finite Control Volumes

p sF F+
 

bF+


( )
CS CV

q q dVq dA
t

ρ ρ∂
= +⋅

∂∫ ∫


 





I II

( )1A ( )2 .A

( ) 2 1n n n nCS
q q q dA q q dAq dAρ ρ ρ= −⋅∫ ∫ ∫









2 2 2V V Aρ=

2 2 2 2 2pxF V V A V Qρ ρ∴ = =

( )( )( )24.05 1.94 2.405 112 lbpxF = =

I = 
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→ The vector sum of all the external 

moments acting on a fluid mass 

equals the time rate of change of the 

moment of momentum (angular 

momentum) vector      of the fluid 

mass.

Example:  rotary lawn sprinklers, ceiling 

fans, wind turbines

4.4 The Moment of Momentum Equation for Finite Control Volumes

( )r F×




( )r M×




4.4.1 The Moment of momentum principle for inertial reference systems

Apply Newton's 2nd law to rotating fluid masses
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4.4 The Moment of Momentum Equation for Finite Control Volumes
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where    = position vector of a mass in an 

arbitrary curvilinear motion

= linear momentum

4.4 The Moment of Momentum Equation for Finite Control Volumes

( )dT r F r M
dt

= × = ×
 

 

(4.35)

r

M
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[Re] Derivation of (4.35)

Take the vector cross product of 

By the way, 

4.4 The Moment of Momentum Equation for Finite Control Volumes

Eq. (4.27): dMF
dt

=




r

dMr F r
dt

× = ×




 

I

( )d dr dMr M M r
dt dt dt

× = × + ×
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where     = angular momentum (moment of momentum)

4.4 The Moment of Momentum Equation for Finite Control Volumes

0dr drI M q m q q
dt dt

 = × = × = = 
 






 




( )sin 0 0q q q q∴ × = =

   

( )ddM r Mr dtdt
 ∴ = ×× 
 









( )dr F r M
dt

∴∴ × = ×
 

 

r M×
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[Re] Torque

• translational motion  →  

Force – linear acceleration

• rotational motion    →  

Torque – angular acceleration 
[Re] Vector Product

Magnitude  =     = area of parallelogram

direction  =  perpendicular to plane of   and → right-handed triple

4.4 The Moment of Momentum Equation for Finite Control Volumes

T r F= ×
 



V a b= ×






sinaV b γ= ×




a b


fig_05_05
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• External moments arise from external forces

where    = external torque

4.4 The Moment of Momentum Equation for Finite Control Volumes

( )b a a b× = − ×
 

 

( ) ( )ka b k a b× = ×
 

 

( ) ( ) ( )a b c a b a b× + = × + ×
  

   

bT


sT


pT


( ) ( ) ( ) ( )p s b
dr F r F r F r M
dt

× + × + × = ×
   

   

( )p s b
dT T T r M
dt

+ + = ×
   

 (4.36)

, ,p s bT T T
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4.4 The Moment of Momentum Equation for Finite Control Volumes

4.4.2 The general moment of momentum equation 

(4.37)

( )
CS CV

dM q q dVq dA
dt t

ρ ρ∂
= +⋅

∂∫ ∫




 





( ) ( ) ( ) ( )
CS CV

d r M dVr q r qq dA
dt t

ρ ρ∂
∴ × = +× ×⋅

∂∫ ∫




    





( ) ( ) ( )
CS CV

T T T dVr q r qq dAp s b t
ρ ρ∂

+ + = +× ×⋅
∂∫ ∫

  



   





angle between andyz yzq r

( ) ( ). : sin cos
2yz yzyz yz

r qx dir r q rqπ αα ×− = =− 
 

 

(4.29):
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4.4 The Moment of Momentum Equation for Finite Control Volumes

( ) ( ) ( ). : cos cospy sy by zx zxCS CV
y dir T T T dVrq rqq dA

t
ρ ρα α∂

− + + = +⋅
∂∫ ∫

  







( ) ( ) ( ). : cos cospz sz bz xy xyCS CV
z dir T T T dVrq rqq dA

t
ρ ρα α∂

− + + = +⋅
∂∫ ∫

  







(4.38)

( ) ( ) ( ). : cos cospx sx bx yz yzCS CV
x dir T T T dVrq rqq dA

t
ρ ρα α∂

− + + = +⋅
∂∫ ∫

  







fig_05_05
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4-12. Derive the expression for the total force per unit width exerted by the 

sluice gate on the fluid in terms of vertical distances shown in Fig. 4-20. 

Homework Assignment # 4

Due: 1 week from today

4-11. Derive the equation for the volume rate of flow per unit width for the 

sluice gate shown in Fig. 4-20 in terms of the geometric variable b, y1, and 

CC. Assume the pressure in hydrostatic at y1 and  ccb and the velocity is 

constant over the depth at each of these sections. 

4.4 The Moment of Momentum Equation for Finite Control Volumes
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4-14. Consider the flow of an incompressible fluid through the Venturi

meter shown in Fig. 4-22. Assuming uniform flow at sections (1) and (2) 

neglecting all losses, find the pressure difference between these sections 

as a function of the flow rate  Q, the diameters of the sections, and the 

density of the fluid,   P.  Note that for a given configuration,  Q is a 

function of only the pressure drop and fluid density. 

4.4 The Moment of Momentum Equation for Finite Control Volumes
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4-15. Water flows into a tank from a supply line and out of the tank 

through a horizontal  pipe as shown in Fig. 4-23. The rates of inflow and 

outflow are the same, and the water surface in the tank remains a 

distance h above the discharge pipe centerline. All velocities in the tank 

are negligible compared to those in the pipe. The head loss between the 

tank and the pipe exit is  HL (a) Find the discharge Q in terms of  h, A,       
and HL. (b) What is the horizontal force,  FX required to keep the tank 

from moving?  (c) If the supply line has an area A’,  what is the vertical 

force exerted on the water in the tank by the vertical jet?

4.4 The Moment of Momentum Equation for Finite Control Volumes
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4-28. Derive the one-dimensional continuity equation for the unsteady, 

non-uniform flow of an incompressible liquid in a horizontal open channel 

as shown in Fig. 4-29. The channel has a rectangular cross section of a 

constant width, b. Both the depth, y0 and the mean velocity, V are 

functions of x and t.

4.4 The Moment of Momentum Equation for Finite Control Volumes
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