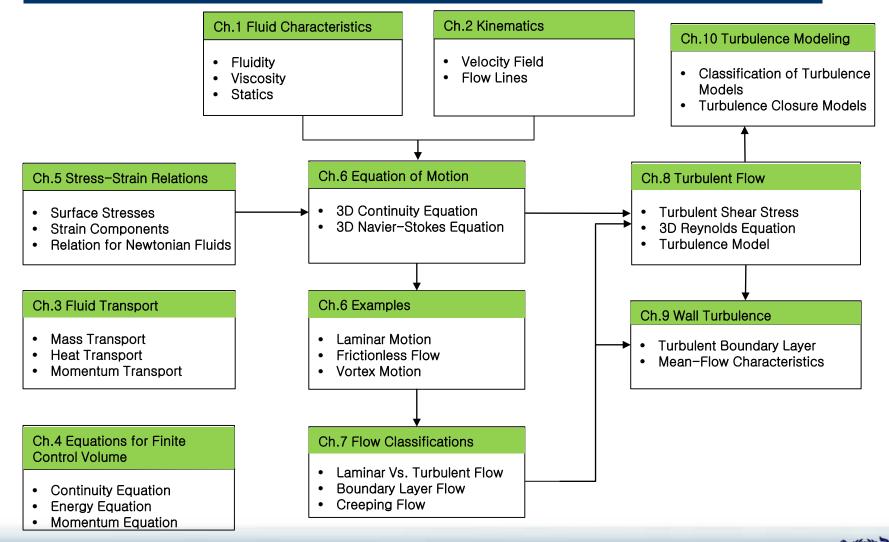

Fluid Dynamics


Chapter 1 Fluid Characteristics

Outline of Course

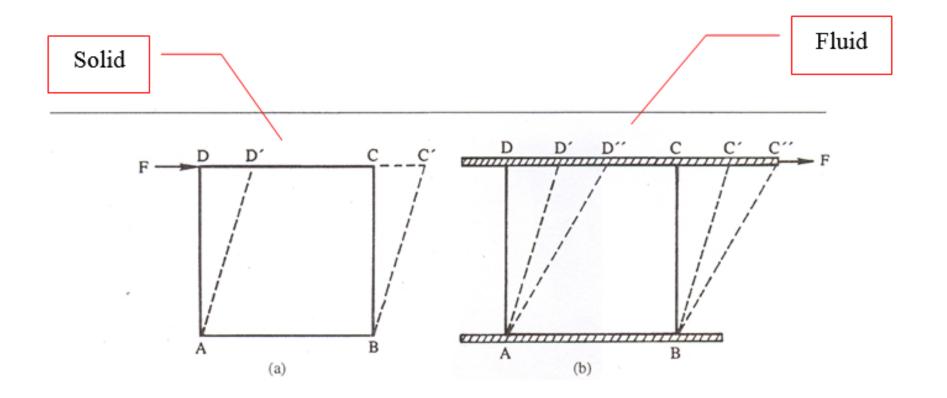
Contents

- 1.1 Introduction
- 1.2 Units of Measurement
- 1.3 Properties and States of Fluids

Objectives

- Define fluidity
- Study fundamental properties of the fluid

Solid		increasing	increasing
ļ		spacing and	intermolecular
	liquid	latitude of	cohesive
Fluid	gas (vapor)	molecular	force
	l plasma	motion	



1.1.2 Fluidity

Fluid	Solid		
 deform <u>continuously</u> <u>under shearing (tangential)</u> <u>stresses</u> no matter how small the stress shear stress ∞ <u>time rate</u> of angular deformation (strain, displacement) 	 deform by an amount proportional to the shear stress applied shear stress ∝ magnitude of the angular deformation (total strain) 		

1.1.3 Compressibility

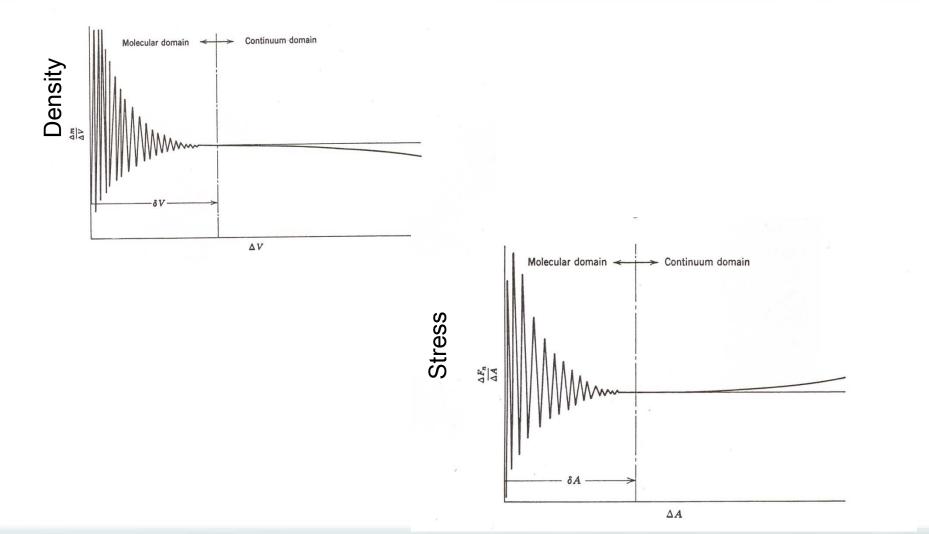
- 1) compressible fluid: gases, vapors \rightarrow thermodynamics
- 2) incompressible fluid: liquid (small compressibility), water

1.1.4 Continuum approach

- dimensions in fluid space are large compared to the molecular spacing to ignore discrete molecular structure
- <u>neglect void</u>
- Consider a small volume of fluid ΔV containing a large number of molecules, and let Δm and v be the mass and velocity of any individual molecule

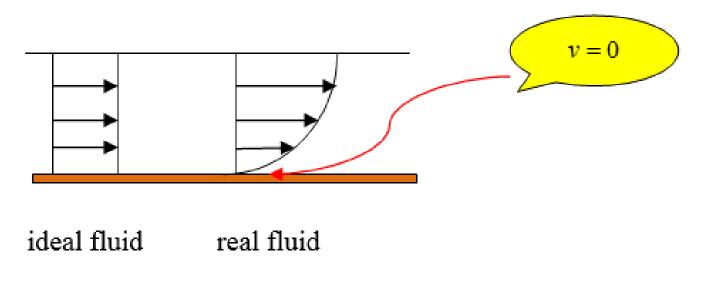
$$\rho = \lim_{\Delta V \to \varepsilon} \frac{\sum \Delta m}{\Delta V}$$

 $\vec{u} = \lim_{\Delta V \to \varepsilon} \frac{\sum v \Delta m}{\sum \Delta m}$


E = volume which is sufficiently small compared with the smallest significant length scale in the flow field but is <u>sufficiently large that</u> <u>it contains a large number of molecules</u>

[Cf] Molecular approach

- molecular point of view
- well developed for light gases



1.1.5 No-slip condition at rigid boundary

- 1) behavior of continuum type viscous fluids
- 2) zero relative velocity at the boundary surface (proven by experiments)

1.1.6 Multiphase system

Single phase fluid: multi-species system (dissolved contaminants)

combination of liquid - gas

Multiphase systems

combination of liquid – vapor → cavitation problem combination of liquid – solid → sediment/pollutant transport combination of gas - solid

1.2 Units of Measurement

- SI system: metric system
- English system: ft-lb system
- * Newton's 2nd law of motion

F = ma $F = \text{force}(N) ; m = \text{mass}(kg) ; a = \text{acceleration}(m / \text{sec}^2)$ $F \rightarrow 1 \text{kg} \cdot m / \text{sec}^2 = 1 \text{N}$ W = mg W = weight ; g = gravitational acceleration

1) extensive (external) properties

- depend on amount of substance
- \rightarrow total volume, total energy, total weight
- 2) intensive (internal) properties
 - ~ independent of the amount present
 - \rightarrow volume <u>per unit mass</u>, energy per unit mass

weight per unit volume (specific weight, γ) pressure, viscosity, surface tension

1.3.1 Properties of importance in fluid dynamics

- (1) Pressure, $p \sim \text{scalar}$
 - $p = F / A (N / m^2)$
 - $p_{\text{gauge}} = p_{\text{absolute}} p_{atm}$
- * Forces on a fluid element

Body force: act without <u>physical contact 질량력</u> Surface force: require physical contact for transmission 표면력

1) body force gravity force centrifugal force
2) surface forces

→ tensile stress (unusual for fluid)
 pressure

 \sim tangential stress → shear stress

(2) Temperature, T

two bodies in thermal equilibrium \rightarrow same temperature

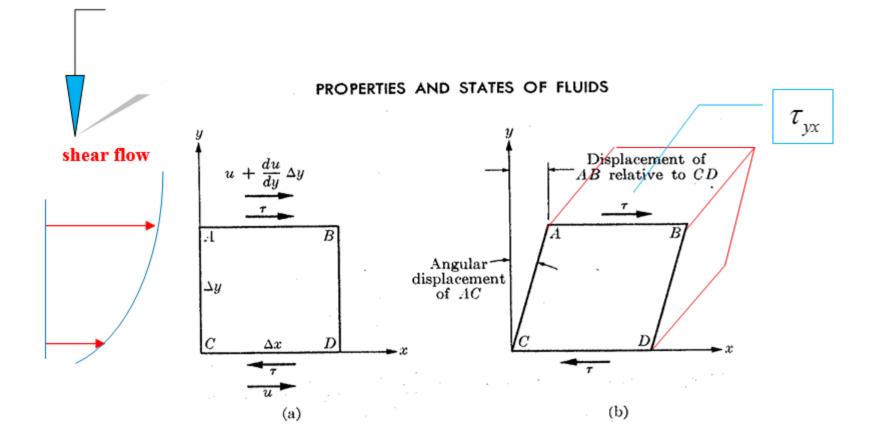
(3) Density, ρ ρ = mass / volume = $\frac{M}{V}$ volume ∞ (pressure, temperature)


```
(4) Specific weight, \gamma
```

 γ = weight / volume

- [Re] Flow of a continuous medium
 - ~ Fluids are treated as homogeneous materials.
 - ~ Molecular effects are disregarded.

mass density
$$\rho(x, y, z, t) = \lim_{\Delta V \to 0} \frac{\Delta M}{\Delta V}$$


velocity vector
$$v = \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t}$$

(5) Viscosity, μ

- ~ due to molecular mobility
- ~ whenever a fluid moves such that a <u>relative motion</u> exists between adjacent volumes (different velocity)

i) displacement of AB relative to CD in Δt

$$\left(u + \frac{du}{dy}\Delta y\right)\Delta t - u\Delta t = \frac{du}{dy}\Delta y\,\Delta t$$

ii) strain = <u>relative</u> displacement = <u>angular displacement</u>

$$\left[\frac{du}{dy}\Delta y\Delta t\right]/\Delta y = \frac{du}{dy}\Delta t$$

iii) <u>time rate of strain (= time rate of angular displacement of AC)</u>

$$\frac{du}{dy}\Delta t \,/\,\Delta t = \frac{du}{dy}$$

$$\tau \propto \frac{du}{dy}$$
$$\tau_{yx} = \mu \frac{du}{dy}$$

where

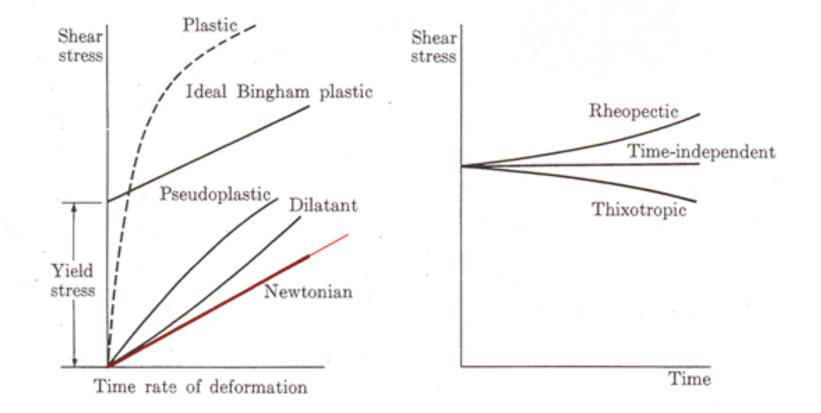
$$\tau_{yx}$$
 = shear stress acting in the x - direction on a plane
whose normal is y - direction (N/m^2)
 $\frac{du}{dy}$ = rate of angular deformation $(1/sec)$
 μ = dynamic molecular viscosity

$$\mu = \frac{\tau}{\frac{du}{dy}} = \frac{N/m^2}{\frac{m/s}{m}} = N \cdot s/m^2$$
$$= (kg \cdot m / s^2) \cdot \frac{s}{m^2} = kg / m \cdot sec = kg/m \cdot s$$

* Kinematic viscosity, \mathcal{V}

$$v = \frac{\mu}{\rho} = \frac{\text{kg/m} \cdot \text{s}}{\text{kg/m}^3} = \text{m}^2/\text{s} \rightarrow \text{kinematic dimensions} \rightarrow \text{Fig. 1.4}$$

[Cf] dynamics: F, L, T \rightarrow shear stress kinematics: L, T \rightarrow deformation \downarrow viscosity links two



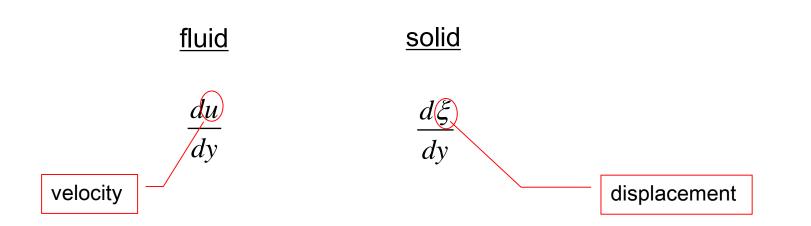
✤ Types of Fluid

 $\begin{cases} \text{Newtonian fluid} \begin{cases} \text{constant and unique value of } \mu \\ \text{linear relation between } \tau \text{ and } \frac{du}{dy} \\ \text{Non-Newtonian fluid} \sim \text{non-linear} \quad \tau = \mu \left(\frac{du}{dy}\right)^n \rightarrow \text{Rheology, plastic} \end{cases}$

Newtonian fluid	Non-Newtonian fluid
 shear stress is <u>linearly proportional</u> to rate of angular deformation starting with zero stress and zero deformation constant of proportionality ≡ μ, <u>dynamic viscosity</u> → Fig. 1.1 water, air 	 variable (<u>nonlinear</u>) proportionality between stress and deformation rate proportionality f (length of time of exposure to stress, magnitude of stress)
[Cf] Analogy between Newtonian fluid and solids obeying Hooke's law of constant modulus of elasticity	 ● plastics: paint, jelly, polymer solutions → Rheology

[Cf] Stress-strain relationship for solid

$$\tau_{yx} = G \frac{d\xi}{dy}$$


 $d\xi$ = relative station displacement of AB

$$\frac{d\xi}{dy}$$
 = angular deformation (shear strain)

G = modulus of elasticity in torsion

* μ = function of (temperature, pressure)

Viscosity versus temperature

	Liquid	Gas
major factor for viscosity	intermolecular cohesion	exchange of momentum
when temperature is <u>increasing</u>	decrease cohesive force → decrease viscosity	increase molecular activity → increase shear stress

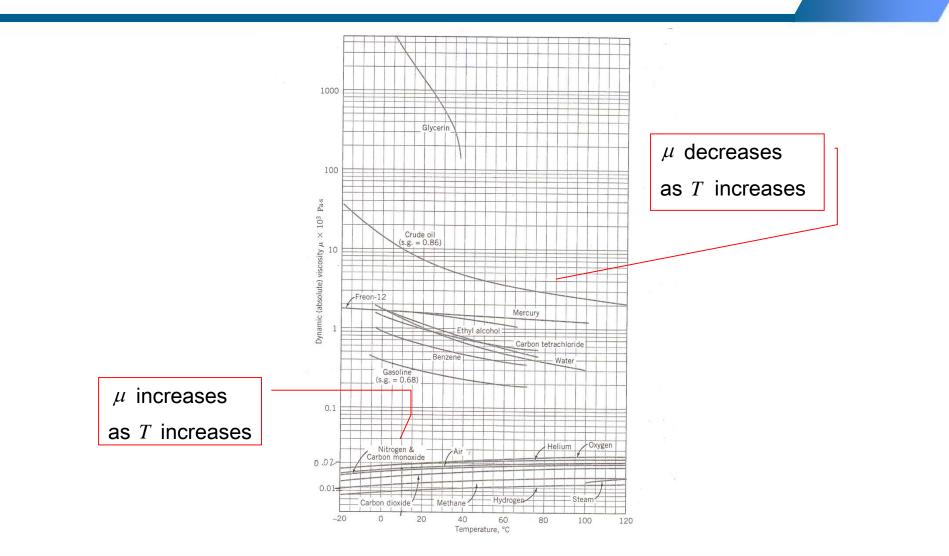
[Re] Exchange of momentum

fast-speed layer (FSL)

Two layers tend to stick together as if there is some viscosity between two.

- molecules from FSL <u>speed up</u>molecules in LSL
- molecules from LSL <u>slow down</u>molecules in FSL

low-speed layer (LSL)



				SI Units			
	<i>T,</i> ℃	ho, kg/m ³	s.g.,	<i>E</i> , kPa	$\mu imes 10^4$ Pa \cdot s	σ, N/m	p _v , kPa
Ethyl alcohol	20	788.6	0.79	1,206 625	12.0	0.022	5.86
Freon-12	15.6	1 345.2	1.35		14.8		_
	- 34.4	1 499.8			18.3		_
Gasoline	20	680.3	0.68		2.9		55.2
Glycerin	20	1 257.6	1.26	4 343 850	14 939	0.063	0.000 014
Hydrogen	-257.2	73.7		-	0.21	0.002 9	21.4
let fuel (JP-4)	15.6	773.1	0.77		8.7	0.029	8.96
Mercury	15.6	13 555	13.57	26 201 000	15.6	0.51	0.000 17
. 15	315.6	12 833	12.8		9.0		47.2
Oxygen (Liquid)	- 195.6	1 206.0 1			2.78	0.015	21.4
Sodium	315.6	876.2	3,55,25		3.30	—	- 0
	537.8	824.6	<u></u>		2.26	_	
Water ^b	20	998.2	1.00	2,170,500	10.0	0.073	2.34
Sea water ^b	20	1024.0	1.03	2,300,000	10.7	0.073	2.34

 $\mu = 1.0 \times 10^{-3} \frac{N}{m^2} s$

(6) Specific heat, c 비열 $\frac{cal}{T \cdot g}$ = ratio of the quantity of heat flowing into a substance per unit mass to the change in temperature

(7) Internal energy, u

specific internal energy = energy per unit mass, J/kg

kinetic + potential energy → internal energy

(8) Enthalpy

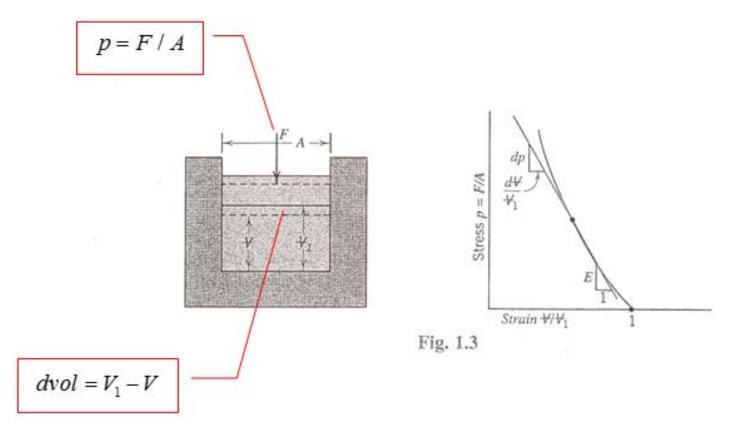
specific enthalpy = $u + p / \rho$

(9) Bulk modulus of elasticity and Compressibility

1) Compressibility, C

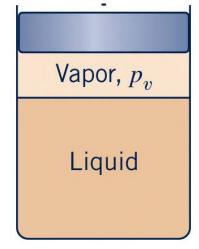
= measure of <u>change of volume and density</u> when a substance is subjected to normal pressures or tensions

= <u>% change in volume (or density)</u> for a given pressure change


$$C = -\frac{dvol}{vol}\frac{1}{dp} = +\frac{d\rho}{\rho}\frac{1}{dp}$$

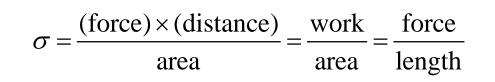
2) Bulk modulus of elasticity, E_{v}

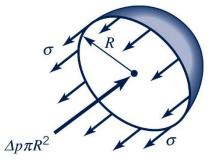
$$E_{v} = \frac{1}{C} = -\frac{dp}{dvol / vol} = \frac{dp}{d\rho / \rho}$$



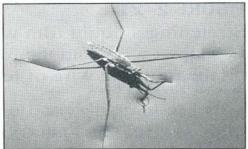
(10) Vapor pressure, p_v

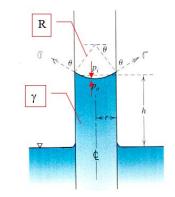
- Liquids tend to evaporate
- Vapor pressure = pressure at which liquids boil
- = equilibrium partial pressure which escaping
- liquid molecules will exert above any free surface
 - Dynamic equilibrium: liquid vapor
- ~ increases with temperature
- ~ The more volatile the liquid, the higher its vapor pressure.
- volatile liquids (휘발성 액체):
 - gasoline: $p_v = 55.2 \text{ kPa}$ at 20 °C
 - water: $p_v = 2.34$ kPa at 20 °C





(11) Surface energy and surface tension,


At boundaries between gas and liquid phase, <u>molecular attraction</u> introduce forces which cause the interface to behave like a membrane under tension.

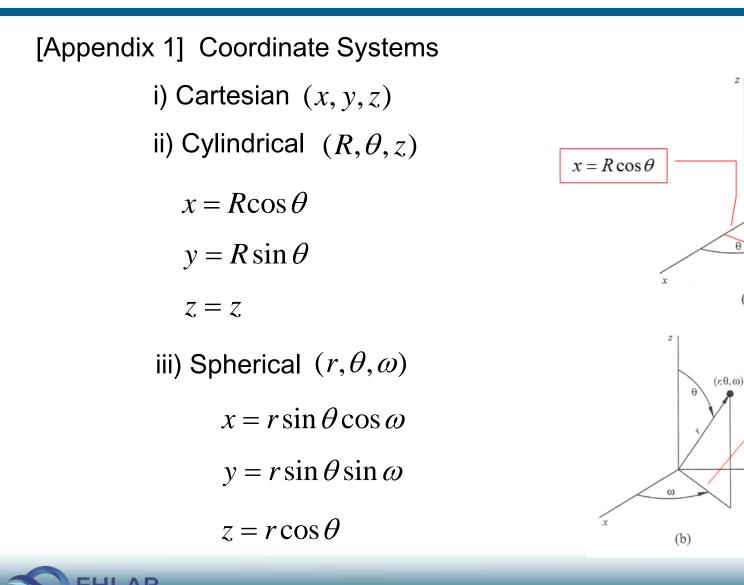


~ water: decrease with temperature

decrea	ase	ER (SI UNITS) ^f	Decrease				
Specific Weight, ^a γ, kN/m ³	Density,ª ρ, kg/m³	Modulus of Elasticity, ^{b,c} $E \times 10^{-6}$, kPa	Viscosity, ^a $\mu \times 10^3$, Pa·s	Kinematic Viscosity, ^a $\nu \times 10^6$, m ² /s	Surface Tension, ^{a,d} σ, N/m	Vapor Pressure, ^e <i>p_v</i> , kPa	
9.805	999.8	1.98	1.781	1.785	0.075 6	0.61	
9.807	1 000.0	2.05	1.518	1.518		0.87	
9.804	999.7	2.10	1.307	1.306	0.074 2	1.23	
9.798	999.1 ·	2.15	1.139	1.139	0.073 5	1.70	
9.789	998.2	2.17	1.002	1.003	0.072 8	2.34	
9.777	997.0	2.22	0.890	0.893	0.072 0	3.17	
9.764	995.7	2.25	0.798	0.800	0.071 2	4.24	
9.730	992.2	2.28	0.653	0.658	0.069 6	7.38	
9.689	988.0	2.29	0.547	0.553	0.067 9	12.33	
9.642	983.2	2.28	0.466	0.474	0.066 2	19.92	
9.589	977.8	2.25	0.404	0.413	0.064 4	31.16	
9.530	971.8	2.20	0.354	0.364	0.062 6	47.34	
9.466	965.3	2.14	0.315	0.326	0.060 8	70.10	
9.399	958.4	2.07	0.282	0.294	0.058 9	101.33	
	decrea PROPERTII Specific Weight, ^a γ, kN/m ³ 9.805 9.807 9.804 9.798 9.789 9.777 9.764 9.730 9.689 9.642 9.589 9.530	$\begin{array}{c c} \text{Specific} \\ \text{Weight,}^{a} & \text{Density,}^{a} \\ \gamma, \text{kN/m}^{3} & \rho, \text{kg/m}^{3} \\ \hline 9.805 & 999.8 \\ 9.807 & 1 000.0 \\ 9.804 & 999.7 \\ 9.798 & 999.1 \\ 9.798 & 999.1 \\ 9.789 & 998.2 \\ 9.777 & 997.0 \\ 9.764 & 995.7 \\ 9.730 & 992.2 \\ 9.689 & 988.0 \\ 9.642 & 983.2 \\ 9.589 & 977.8 \\ 9.530 & 971.8 \\ \hline \end{array}$	decreasePROPERTIES OF WATER (SI UNITS) ^f Specific Weight, ^a γ , kN/m ³ Modulus of ρ , kg/m ³ Specific γ , kN/m ³ Modulus of $E \times 10^{-6}$, kPa9.805 9.807999.81.000.0 9.8042.05 9.99.79.805 9.804999.79.798 9.798999.19.777 9.777 9.7772.10 9.789 9.7829.764 9.642995.7 9.82.29.689 9.642988.0 9.22 2.28 9.5899.589 9.530971.8 9.220	decreaseDecreasePROPERTIES OF WATER (SI UNITS) ^f Specific Weight, a γ , kN/m3Modulus of ρ , kg/m3Viscosity, a $E \times 10^{-6}$, kPa9.805 9.807 9.807 9.804 9.997 9.997 9.71 9.708 9.778 9.778 9.777 9.789 9.777 9.764 9.777 9.730 9.776 9.777 	decreaseDecreasePROPERTIES OF WATER (SI UNITS) ^f $\stackrel{Specific}{Y, kN/m^3}$ Modulus of Elasticity, ^{b,c} $E \times 10^{-6}$, kPaViscosity, ^a $\mu \times 10^3$, Pa·sKinematic $\nu \times 10^6$, m²/s9.805999.81.981.7811.7859.8071 000.02.051.5181.5189.804999.72.101.3071.3069.798999.12.151.1391.1399.789998.22.171.0021.0039.777997.02.220.8900.8939.764995.72.250.7980.8009.730992.22.280.6530.6589.689988.02.290.5470.5539.642983.22.280.4660.4749.589977.82.250.4040.4139.530971.82.200.3540.364	decreaseDecreasePROPERTIES OF WATER (SI UNITS) ^f Specific Weight, a $\gamma, kN/m^3$ Modulus of Elasticity, bc $E \times 10^{-6}, kPa$ Viscosity, a $\mu \times 10^3, Viscosity, aPa \cdot sSurfaceViscosity, a\nu \times 10^6, m^2/s9.8059.8079.8079.8049.9979.8049.999.71.982.102.101.3071.3061.3071.3060.074 29.7899.7779.7899.7779.7009.7649.9579.7222.2251.7811.1390.0330.072 00.8930.6530.6530.6580.6530.6580.6530.6580.6530.6580.6530.6580.6530.6580.6530.6530.6530.6580.6530.6540.6530.6530.6530.6540.6530.6540.6530.6530.6580.656 2.290.5470.5530.6530.6580.654$	

 (R, θ, z)

ż


 $R = r \sin \theta$

(a)

y

y

1.3 Properties and States of Fluids

[Appendix 2] Tensor

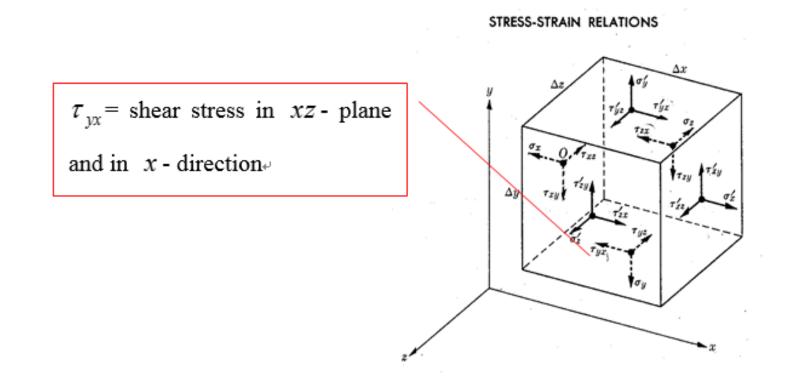
- Scalar quantity with magnitude only
- Vector quantity with magnitude and direction
- Tensor an order array of entities which is invariant under coordinate transformation, this includes scalars and vectors
- Rank (order) of tensors 3^p

Oth order – 1 component, scalar (e.g., mass, length, pressure)

1st order – 3 components, vector (e.g., velocity, force, acceleration)

2nd order – 9 components, (e.g., stress, rate of strain, turbulent diffusion

coeff.)


- Example of 2nd order tensor
 - ~ stress acting on a fluid element

Stress tensor =
$$\begin{bmatrix} \sigma_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{yy} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{zz} \end{bmatrix}$$

- σ = normal stress,
- τ = shear stress

