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Turbulence Models and Their 
Applications
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10.4 Turbulence-Closure Models   

○ Turbulence model

~ represent the turbulence correlations                  etc. in the mean-flow 

equations in a way that these equations are closed by relating the 

turbulence correlations to the averaged dependent variables (U, V, W)

○ Hypotheses must be introduced for the behavior of these correlations 

which are based on empirical information. 

→ Turbulence models always contain empirical constants and functions.

→ Turbulence models do not describe the details of the turbulent 

fluctuations (u, v, w) but only the average effects of these terms on the 

mean quantities. 

2, ,u uv u
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10.4 Turbulence-Closure Models   

○ Parameterization of turbulence 

~ core of turbulence modeling 

~ local state of turbulence and turbulence correlations are assumed to be 

characterized by only a few parameters.

→ Two important scales are velocity scale and length scale. 

○ Three steps of parameterization

1) choose parameters:  

2) establish relation between turbulence correlations and chosen 

parameters:  

3) determine distribution of these parameters over the flow field:  v(x, y, z, t)
𝜈𝜈𝑡𝑡 = 𝑐𝑐𝜇𝜇

𝑘𝑘2

𝜀𝜀

( ), ( )v k l 
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10.4 Turbulence-Closure Models   

[Re] Friction coefficient and mixing coefficient

For 1D flow models, parameterization of turbulence and its effects has been 

achieved by the use of friction coefficients (Chow, 1956) or mixing 

coefficients (Fischer et el., 1979).

→ In 1D calculations, the flow is assumed to be fully mixed by the 

turbulence over any cross section so that the only further effect that 

turbulence can have is to exert wall friction, which can be accounted for 

adequately by the use of friction coefficients.

But for multi-dimensional flow models, turbulence has been parameterized 

by constant or mixing-length-controlled eddy viscosities and diffusivities.
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10.4 Turbulence-Closure Models   

10.4.1 Basic concepts
(1) Eddy viscosity concept

(1) Boussinesq (1877) introduced eddy viscosity, νt assuming that,  in 

analogy to the viscous stresses in laminar flow, the turbulent stresses are 

proportional to the mean velocity gradients.

(10.23)

where k = turbulent kinetic energy per unit mass (normal stress)

δij= Kronecker delta 

δij = 1 for i = j and δij = 0 for i ≠ j

(10.24)

2
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10.4 Turbulence-Closure Models   

- This eddy viscosity concept is based on the close analogy between 

laminar and turbulent stresses, and has often been criticized as 

physically unsound.

- This concept has often been found to work well in practice because νt

can be determined to good approximation in many flows.

- Eq. (10.23) alone does not constitute a turbulence model.

- It provides the frame-work for constructing the turbulence model.

- The turbulence model is to determine the distribution of  νt.
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10.4 Turbulence-Closure Models   

▪ Eddy viscosity, νt

~ not a fluid property, and depends on state of the turbulence

~ may vary considerably over the flow field 

~ is proportional to a velocity scale    , and a length scale L
(10.25)

→ it is actually the distribution of the velocity and length scales that can 

be approximated reasonably well in many flows.

V̂

∝ ˆ
t

VL
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10.4 Turbulence-Closure Models   

(2) Eddy diffusivity concept

In direct analogy to the turbulent momentum transport, the turbulent heat 

or mass transport is assumed to be proportional to the gradient of the 

transported quantity, 

(10.26)

where   Γt= eddy (turbulent) diffusivity of heat or mass 

i t
i

u
x




  

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10.4 Turbulence-Closure Models   

▪ Eddy diffusivity, Γt

~ is not a fluid property, like the eddy viscosity, and depends on state of 

the turbulence.

~ depends in general on the direction of the heat or mass flux → 

anisotropic

▪ Relation between eddy viscosity and eddy diffusivity 

→ use turbulent Prandtl (heat) or Schmidt number (mass), σt

(10.27)

where σt ~ is assumed to be constant, is usually less than unity

현재 이 이미지를 표시할 수 없습니다.

현재 이 이미지를 표시할 수 없습니다.
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10.4 Turbulence-Closure Models   

10.4.2 Types of turbulence models
(1) Classification based on the use of eddy viscosity concept

- Classification of turbulence model would be according to whether the models 

use the eddy viscosity concept.

1) Eddy viscosity model

2) Non- eddy viscosity model:  Bradshaw et al.’s model 

Reynolds-stress equations

(2) Classification based on the use of transport equations

1)  No transport model

- These models do not involve transport equations for turbulence quantities

- These models assume that the turbulence is dissipated by viscous action at 

the point where it is generated by shear
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10.4 Turbulence-Closure Models   

2) Transport model

- These models employ transport equations for quantities (k, l, ε) 
characterizing the turbulence in order to account for the transport of 

turbulence in space and time.

- These models are adequate in cases where the status of turbulence at a 

point is influenced by the turbulence generation somewhere else in the 

flow or by the generation at previous times (history effects).

- These equations, similar to the mass/heat transport equation, contain 

terms representing both advective transport by mean motion and the 

diffusive transport by the turbulent motion
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10.4 Turbulence-Closure Models   

 Classification based on the number of transport equations

It is customary to classify turbulence models according to the number of 

transport equations used for turbulence parameters. 

(i) Zero-Equation Models

- Constant eddy viscosity (diffusivity) model

- Mixing-length model 

- Free-shear-layer model

(ii) One-Equation Models

- k equation model

- Bradshaw et al.'s model: non-eddy viscosity model
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10.4 Turbulence-Closure Models   

(iii) Two-Equation Models 

- k-ε model

- k-l model

(iv) Turbulent Stress/Flux-Equation Models

- non-eddy viscosity model

• Reynolds-stress equations (Chou, 1945)

- 6 transport equation for momentum transport and 3 transport equation for 

scalar transport

- employ transport equations for the individual stresses  i j
u u
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10.4 Turbulence-Closure Models   

• Algebraic stress/flux models

- Use algebraic relation for  

𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 = 𝑘𝑘 2
3
𝛿𝛿𝑖𝑖𝑖𝑖 +

�1−𝛼𝛼)
𝑃𝑃𝑖𝑖𝑖𝑖
𝜀𝜀 −

2
3𝛿𝛿𝑖𝑖𝑖𝑖

𝑃𝑃
𝜀𝜀 + 1−𝑐𝑐3

𝐺𝐺𝑖𝑖𝑖𝑖
𝜀𝜀 −

2
3𝛿𝛿𝑖𝑖𝑖𝑖

𝐺𝐺
𝜀𝜀

𝑐𝑐1+
𝑃𝑃+𝐺𝐺
𝜀𝜀 +1

- Need to use transport equation of k
- Useful tools between the isotropic-eddy viscosity models and stress/flux 

equation models but have been little tested so far

i j
u u
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RANS

Boussinesq’s eddy 
viscosity equation

−𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 = 𝜈𝜈𝑡𝑡
𝜕𝜕𝑈𝑈𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕𝑈𝑈𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖

−
2
3
𝑘𝑘𝛿𝛿𝑖𝑖𝑖𝑖

2
t m
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z

 
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c kL 

Prandtl’s Free-shear-
layer model

C =  0.01 Mixing  layer
0.014 Plane jet
0.011 Round jet
0.019 Radial jet
0.026 Plane wake

One-equation model

• Transport equation
of 

•

Two-equation model

• Transport equation
of

• Transport equation 
of 

max mint
C U U  

𝑘𝑘

𝜀𝜀

𝑘𝑘

Mixing-length models

• 𝑙𝑙𝑚𝑚 = 𝑐𝑐𝑐𝑐

• )𝑙𝑙𝑚𝑚 = 𝑓𝑓(𝑅𝑅

• 𝑙𝑙𝑚𝑚 = 𝑘𝑘𝑘𝑘

𝜈𝜈𝑡𝑡 = 𝑐𝑐𝜇𝜇
𝑘𝑘2

𝜀𝜀

Fig. 10-1 Summary of Turbulence Models Based on Eddy Viscosity Concept

𝐿𝐿 = 𝜅𝜅
𝛹𝛹
𝜕𝜕𝛹𝛹
𝜕𝜕𝑧𝑧
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𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 = 𝑘𝑘
2
3 𝛿𝛿𝑖𝑖𝑖𝑖 +

�1 − 𝛼𝛼)
𝑃𝑃𝑖𝑖𝑖𝑖
𝜀𝜀 − 2

3 𝛿𝛿𝑖𝑖𝑖𝑖
𝑃𝑃
𝜀𝜀 + 1 − 𝑐𝑐3

𝐺𝐺𝑖𝑖𝑖𝑖
𝜀𝜀 − 2

3 𝛿𝛿𝑖𝑖𝑖𝑖
𝐺𝐺
𝜀𝜀

𝑐𝑐1 + 𝑃𝑃 + 𝐺𝐺
𝜀𝜀 + 1

RANS

• Transport equation of

•

One-equation model

Bradshaw et al.

• Algebraic equation of 

Algebraic stress/flux models

⁄𝐿𝐿 𝛿𝛿 = 𝑓𝑓
𝑦𝑦
𝛿𝛿

𝑢𝑢𝑢𝑢
𝑎𝑎1

Turbulent stress/flux-equation models

• Transport equation of

- 6 transport eqs for momentum transport
- 3 transport eqs for scalar transport

𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗

𝑘𝑘• Transport equation of   

𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗 = 𝑘𝑘
2
3𝛿𝛿𝑖𝑖𝑖𝑖 +

�1− 𝛼𝛼)
𝑃𝑃𝑖𝑖𝑖𝑖
𝜀𝜀 − 2

3𝛿𝛿𝑖𝑖𝑖𝑖
𝑃𝑃
𝜀𝜀 + 1 − 𝑐𝑐3

𝐺𝐺𝑖𝑖𝑖𝑖
𝜀𝜀 − 2

3 𝛿𝛿𝑖𝑖𝑖𝑖
𝐺𝐺
𝜀𝜀

𝑐𝑐1 + 𝑃𝑃 + 𝐺𝐺
𝜀𝜀 + 1

Fig. 10-2 Summary of Turbulence Models not Employing Eddy-Viscosity Concept
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10.4 Turbulence-Closure Models   

10.4.3 Zero-equation models
~ do not involve transport equations for turbulence quantities

~ assume that the turbulence is dissipated by viscous action at the point 

where it is generated by shear

~ there is no transport of turbulence over the flow field

~ employ the eddy viscosity concept

~ specify the eddy viscosity from experiments, by trial and error, through 

empirical formulae, by relating it to the mean-velocity distribution
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10.4 Turbulence-Closure Models   

10.4.3 Zero-equation models
~ do not involve transport equations for turbulence quantities

~ assume that the turbulence is dissipated by viscous action at the point 
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~ employ the eddy viscosity concept

~ specify the eddy viscosity from experiments, by trial and error, through 

empirical formulae, by relating it to the mean-velocity distribution
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10.4 Turbulence-Closure Models   

(1) Constant eddy viscosity (diffusivity) model

~ the simplest turbulence model

~ used for large water bodies in which the turbulence terms in the momentum 

equations are unimportant

~ use constant eddy viscosity (diffusivity) over the whole flow field 

~ The constant eddy diffusivity model is appropriate only for far-field situations

where the turbulence is governed by the natural water body and not by local 

man-made disturbances such as water intake or discharges.

2
3

ji
i j t ij

j i

UU
u u k

x x
 
           

(10.23)
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10.4 Turbulence-Closure Models   

▪ Depth-variable viscosity/diffusivity 

· Open channel flow: νt has a nearly parabolic distribution with depth

· Plane jet: νt increases with the one-half power of the distance from the 

origin

▪ Depth-averaged viscosity/diffusivity

- Constant eddy viscosity (diffusivity) concept has its greatest importance in 

depth average calculation where only horizontal transport is considered.

*( ) 1t
z zdu
d d

ν κ  = −  
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10.4 Turbulence-Closure Models   

 The depth-averaged 2D model

- Vertical momentum transport is not important.

- The vertical transport of momentum is represented by the bottom shear.

- When turbulences are mainly bed-generated, as in the channel flow, the 

depth-mean diffusivity for the horizontal transport is given as

where h = water depth; u* = friction velocity; 

C = empirical constant ~ 0.135 for wide laboratory channels

*

* 0

C hu

u



 


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10.4 Turbulence-Closure Models   

[Re] Mixing coefficients for 3D transport model

Turbulent diffusion coefficients

( ) ( ) ( )x y z
c c c c c c cu v w
t x y z x x y y z z

ε ε ε∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

*0.15x l duε ε= =

*0.15y t duε ε= =

*0.067z v duε ε= =
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10.4 Turbulence-Closure Models   

▪ Mixing coefficients for 2D model

Depth-averaged 2D transport model is

The depth-mean diffusivities account for both turbulent transport and the 

dispersive transport due to vertical non-uniformities of velocity.

→ Mixing coefficients = dispersion coefficient + turbulent diffusion 

coefficients

2 2

2 2L T
c c c c cu v D D
t x z x z

∂ ∂ ∂ ∂ ∂
+ + = +

∂ ∂ ∂ ∂ ∂
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10.4 Turbulence-Closure Models
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10.4 Turbulence-Closure Models

Turbulent diffusion in uniform velocity flow vs. 
Shear dispersion due to non-uniform velocity distribution (Daily and 

Harlemann, 1966)
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10.4 Turbulence-Closure Models   

- Elder’s formula is based on logarithmic velocity distribution (1959)

L lD D ε= +


*0.15l duε =

*60 400L lD du ε= ≈

*5.93 40l lD du ε= ≈

 Longitudinal mixing coefficient

- Observed longitudinal dispersion coefficient is much larger
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10.4 Turbulence-Closure Models   

T t tD D ε= +

*0.15t duε =

0.463 0.299
0.733

* *0.029t
n

D u W S
du u d

   =    
   

* 0.3 ~ 3.0 (2 ~ 20)t
t

D
du

ε= =

 Transverse mixing coefficient
(a)
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10.4 Turbulence-Closure Models   

▪ Mixing coefficients in numerical model

· In numerical calculations of large water bodies, additional processes are 

represented by the diffusivity.

i) Sub-grid advection

Owing to computer limitations, the numerical grid of the numerical 

calculations cannot be made so fine as to obtain grid-independent 

solutions.

→ All advective motions smaller than the mesh size, such as in small 

recirculation zones, cannot be resolved. Thus, their contribution to the 

transport must be accounted for by the diffusivity (numerical dispersion).
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10.4 Turbulence-Closure Models   

ii) Numerical diffusion (Truncation error)

The approximation of the differential equations by difference equations 

introduces errors which act to smooth out variations of the dependent 

variables and thus effectively increase the diffusivity.

→ This numerical diffusion is larger for coarser grids.

· An effective diffusivity accounts for turbulent transport, numerical 

diffusion, sub-grid scale motions, and dispersion (in the case of depth-

average calculations).

→ The choice of a suitable mixing coefficient ( DMT ) is usually not a 

turbulence model problem but a matter of numerical model calibration.

For 2D model, 
MT t t sgm ndD D ε ε ε= + + −
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10.4 Turbulence-Closure Models   

(2) Mixing-length model 

▪ Application:

For near-field problems involving discharge jets, wakes, and the vicinity of 

banks and structures, assumption of a constant eddy viscosity is not 

sufficient. 

→ distribution of νt over the flow field should be determined

Mixing length,     is defined as the cross-stream distance traveled by a fluid 

particle before it gives up its momentum and loses its identity. 
m
l
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10.4 Turbulence-Closure Models   

▪ Prandtl's mixing-length hypothesis (Prandtl, 1925)

- Prandtl assumed that eddy viscosity νt is proportional to a mean 

representation of the fluctuating velocity     and a mixing-length lm.u

ˆ
t m

Vl  (A)

Considering shear layers with only one significant 

turbulent stress (    ) and velocity gradient ,           

he postulated  

ˆ
m

U
V u l

z


 


(B)

uv
U
z




m
l

( )U z

u

[Re] Taylor's mixing-length concept (1915)

z
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10.4 Turbulence-Closure Models   

Combine (A) and (B)

(10.28)

- The eddy viscosity is related directly to the local mean velocity gradient.

- Therefore, the mixing length hypothesis involves a single parameter 

that needs empirical specification; the mixing length lm .

- Combine (10.28) with (10.23)

2
t m

Ul
z

 


2
t m

U UUuv l
z zz


   
 
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10.4 Turbulence-Closure Models   

▪ Mixing length 

i) Boundary-layer flows along walls

① Near-wall region

where  κ = von Karman constant ( 0.4)

② Outer region

where δ = boundary layer thickness

m
l z

m
l 
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10.4 Turbulence-Closure Models   

Plane mixing
layer

Plane
jet

Round 
jet

Radial
jet

Plane
wake

0.07 0.09 0.075 0.125 0.16m
l

b

ii) Free shear flows:  mixing layers, jets, wakes

where b = local shear-layer width

m
l b
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10.4 Turbulence-Closure Models   

▪ Effect of Buoyancy 

~ Buoyancy forces acting on stratified fluid layers have a strong effect 

on the vertical turbulent transport of momentum and heat or mass

→ eddy viscosity relations for vertical transport must be modified by 

introducing a Richardson number correction 

Munk-Anderson (1948) relation 

(10.29a)

(10.29b)

0.5
0

( ) (1 10 )
tz tz i

R   

    1.5

0
1 3.3tz tz i

R

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10.4 Turbulence-Closure Models   

(stable stratification)             (10.30a)

(unstable stratification)     (10.30b)

where 

Subscript 0 refers to values during unstratified conditions (           ) 

Define gradient local Richardson number Ri as 

(10.31)

~ ratio of gravity to inertial forces

0

1
1 , 0m

i i
m

l
R R

l
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 
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/ 2
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0
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
 

     
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10.4 Turbulence-Closure Models   

▪ Limitation of the mixing length model

i) The mixing length model has been applied mainly to two-dimensional 

shear-flows with only one significant velocity gradient.

ii) Mixing-length distribution is empirical and rather problem-dependent. 

→ model lacks universality

ii) Close link of eddy viscosity (diffusivity) with velocity gradient, i.e. νt = 0

when            , implies that this model is based on the assumption of local 

equilibrium of turbulence.

0i

i

U

x


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

2
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UUuv l
zz
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10.4 Turbulence-Closure Models   

 Local equilibrium of turbulence

- Turbulence is locally dissipated by viscous action at the same rate as it is 

produced by shear.

- Transport and history effects are neglected (turbulence generation at 

previous times).

- Thus, this model is not suitable when these effects are important as is the 

case in rapidly developing flows, recirculating flows and also in unsteady 

flows.

0.90

0.69

0.47

0.26

0.05

Vel. (m/s)
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10.4 Turbulence-Closure Models   

▪ Mixing length model for general flows is given as

- It is very difficult to specify the distribution of lm in complex flow 

- In general duct flows (Buleev, 1962) 

where δ = distance of the point at which lm  is to be determined from wall 

along direction Ω; D = integration domain (= cross section of the duct)

1 1
m D
l d

 
 

1
2

2 ji i
t m

j i j

UU U
l

x x x


              

(10.32)
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10.4 Turbulence-Closure Models   

 Mixing-length hypothesis for heat and mass transfer 

The mixing-length hypothesis is also used in heat and mass transfer 

calculations. 

21t
t m

t t

Ul
z


 

  


where σt = turbulent Prandtl (Schmidt) number 

=  0.9 in near-wall flows

0.5 in plane jets and mixing layers

0.7 in round jets

(10.33)
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10.4 Turbulence-Closure Models   

∙ Shortcomings of mixing-length model for heat and mass transport

i) νt and Γt vanish whenever the velocity gradient is zero.

[Ex] For pipes and channels, 

In reality, 

However, 

ii) The mixing-length model implies that turbulence is in a state of local 

equilibrium.

→ Thus, this model is unable to account for transport by turbulent motion. 

ⓐ
max

centerline 0.8( )
t t
 

ⓐ0 centerline 0
t t

U
z




    

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10.4 Turbulence-Closure Models   

(3) Prandtl's free-shear-layer model

Prandtl (1942) proposed a simpler model applicable only to free shear 

layers (mixing layers, jets, wakes).

(10.34)

Table 10.1 Values of empirical constant C

m
l 

max min
V̂ U U 

max mint
C U U  

Plane mixing
layers

Plane
jet

Round
jet

Radial
jet

Plane
wake

0.01 0.014 0.01 0.019 0.026
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