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• Apply Newton's 2nd law of motion 

• External forces = surface force + body force 

〮 Surface force:

~ normal force + tangential force

〮 Body forces:

~ due to gravitational or electromagnetic fields, no contact

~ act at the centroid of the element → centroidal force

6.4 Equations of Motion

(A)F ma=∑




x xF ma∆ = ∆
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Consider only gravitational force

6.4 Equations of Motion

x y zg ig jg kg= + +


 



LHS of (A):

( )x xF gx y zρ∆ = ∆ ∆ ∆

x
x xy z y zx

x
σσ σ ∂ − ∆ ∆ + ∆ ∆+ ∆ 
∂ 
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yx yxx z x zy
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τ

τ τ
∂ 

− ∆ ∆ + ∆ ∆+ ∆ ∂ 

zx
zx zxx y x yz

z
ττ τ ∂ − ∆ ∆ + ∆ ∆+ ∆ 
∂ 
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tangential force



6/21

6.4 Equations of Motion

Divide (B) by volume of element

yxx x zx
x

F g
x y z x y z

τσ τρ
∂∆ ∂ ∂

= + + +
∆ ∆ ∆ ∂ ∂ ∂

(C)

RHS of (A):

x
x

ma a
x y z

ρ∆
=

∆ ∆ ∆
(D)
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6.4 Equations of Motion

Combine (C) and (D)

yxx zx
x xg a

x y z
τσ τρ ρ

∂∂ ∂
+ + + =

∂ ∂ ∂

xy y zy
y yg a

x y z
τ σ τ

ρ ρ
∂ ∂ ∂

+ + + =
∂ ∂ ∂

yzxz z
z zg a

x y z
ττ σρ ρ

∂∂ ∂
+ + + =

∂ ∂ ∂ (6.21)
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6.4 Equations of Motion

6.4.1 Navier-Stokes equations
– Eq (6.21) ~ general equation of motion containing 9 unknowns

– For Newtonian fluids (with single viscosity coeff.), use stress-strain 

relation given in (5.29) and (5.30) to reduce the number of unknowns

→ Navier-Stokes equations

Eq. (5.29): 

( )22
3

pressure normal stress due to fluid deformation and viscosity

x
up q
x

σ µ µ∂  = − + − ∇ ⋅ ∂  




9/21

6.4 Equations of Motion

( )22
3y

vp q
y

σ µ µ∂  = − + − ∇ ⋅ ∂  


( )22
3z

wp q
z

σ µ µ∂  = − + − ∇ ⋅ ∂  


Eq. (5.30):

yx xy
v u
x y

τ τ µ
∂ ∂ += =  ∂ ∂ 

yz zy
w v
y z

τ τ µ
∂ ∂ += =  ∂ ∂ 

zx xz
u w
z x

τ τ µ ∂ ∂ = = + 
∂ ∂ 

(6.23)

(6.22)
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Substitute Eqs. (5.29) & (5.30) into (6.21)

Assume constant viscosity (neglect effect of pressure and temperature on 

viscosity variation)

6.4 Equations of Motion

( )22
3x x

v up u u wg aq x yx x y zx z x
ρ µ µ ρµ µ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂  ∂ ∂    +− + + + =− +∇ ⋅        ∂ ∂∂ ∂ ∂ ∂∂ ∂ ∂      



( )22
3x x

v up u u wg aq x yx x y zx z x
ρ µ µ µ ρ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂  ∂ ∂    +− + + + =− +∇ ⋅        ∂ ∂∂ ∂ ∂ ∂∂ ∂ ∂      



u v w
x y z

∂ ∂ ∂
+ +

∂ ∂ ∂
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6.4 Equations of Motion

Expand and simplify

u v w
x y zx

∂ ∂ ∂∂  + + ∂ ∂ ∂∂  

2 2 2 2 2 2 2 2

2 2 2 2

2. . 2
3x

p u u v w v u u wL H S g
x x x x y x z x y y z x z

ρ µ µ µ
   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= − + − ++ + + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

2 2 22 2 2

22 2 2

1
3x

u v wp u u ug
x x y x zx x y z

ρ µ µ
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ + += − + ++ +    ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂   

( )
2 2 2

2 2 2

1
3x

p u u ug q
x xx y z

ρ µ µ
 ∂ ∂∂ ∂ ∂

= − + ++ + ∇ ⋅ ∂ ∂∂ ∂ ∂ 



normal stress shear stress

normal stress + shear stress
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6.4 Equations of Motion

( )
2 2 2

2 2 2

1
3x x

p u u ug aq
x xx y z

ρ µ µ ρ
 ∂ ∂∂ ∂ ∂

− + + =+ + ∇ ⋅ ∂ ∂∂ ∂ ∂ 



( )
2 2 2

2 2 2

1
3y y

p v v vg aq
y yx y z

ρ µ µ ρ
 ∂ ∂∂ ∂ ∂

− + + =+ + ∇ ⋅ ∂ ∂∂ ∂ ∂ 



( )
2 2 2

2 2 2

1
3z z

p w w wg aq
z zx y z

ρ µ µ ρ
 ∂ ∂∂ ∂ ∂

− + + =+ + ∇ ⋅ ∂ ∂∂ ∂ ∂ 



→ Navier-Stokes equation for compressible fluids with constant viscosity

(6.24)
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1) For inviscid (ideal) fluid flow, (µ = 0) → viscous forces are neglected.

6.4 Equations of Motion

♦ Vector form

( ) ( )2

3
qg p q qq q
t

µρ µ ρ ρ∂
− ∇ + ∇ + ∇ = +∇ ⋅ ⋅∇

∂



   

( )dq qa qq
dt t

∂
= = + ⋅∇

∂

 

 

where --- Eq. (2.5)

( )qg p qq
t

ρ ρ ρ∂
− ∇ = + ⋅∇

∂



 

→ Euler equations for ideal fluid
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2) For incompressible fluids,                (Continuity Eq.) 

Define acceleration due to gravity as

6.4 Equations of Motion

0q∇ ⋅ =


( )2 qg p q qq
t

ρ µ ρ ρ∂
− ∇ + ∇ = + ⋅∇

∂



  

(6.25)

x
hg g
x

∂
= −

∂

y
hg g
y

∂
= −

∂
g g h= − ∇


z
hg g
z

∂
= −

∂
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where  h = vertical direction measured positive upward

For Cartesian axes oriented so that h and z coincide

→ minus sign indicates that acceleration due to gravity is in the negative   

h direction

Then, N-S equation for incompressible fluids and isothermal flows are

6.4 Equations of Motion

(6.26)0 , 1x y
hg g
z

∂
= = =

∂

zg g= − (6.27)
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6.4 Equations of Motion

2 2 2

2 2 2

1u u u u h p u u uu v w g
t x y z x x x y z

µ
ρ ρ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − − + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

2 2 2

2 2 2

1v v v v h p v v vu v w g
t x y z y y x y z

µ
ρ ρ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − − + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

2 2 2

2 2 2

1w w w w h p w w wu v w g
t x y z z z x y z

µ
ρ ρ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − − + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

(6.28)

Local 
acceleration

Convective 
acceleration

Body force 
per mass

Pressure force 
per mass

Viscosity force 
per mass
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Eq. (6.28):  4 unknowns – u, v, w, p
→ We need one more equation to obtain a solution when the boundary

conditions are specified.

→ Eq. of continuity for incompressible fluid

♦ Boundary conditions

1) kinematic BC:  velocity normal to any rigid boundary (wall) equal the 

boundary velocity (velocity = 0 for stationary boundary)

2) physical BC:  no slip condition (continuum stick to a rigid boundary)

→ tangential velocity relative to the wall vanish at the wall surface

6.4 Equations of Motion

0u v w
x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
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6.4 Equations of Motion

♦ General solutions for Navier-Stocks equations are not available because 

of the nonlinear, 2nd-order nature of the partial differential equations. 

→ Only particular solutions may be obtained by simplifications.

→ Numerical solutions are usually sought.

r - component:
2

r r r r
r z

v vv v v vv v
t r r r z

θ θρ
θ

 ∂ ∂ ∂ ∂
+ + − + 

∂ ∂ ∂ ∂ 

( ){ } 2 2

2 2 2 2
1 21 r r

r r

p v v vg rv
r r r r zr r

θρ µ
θ θ

 ∂ ∂ ∂ ∂ ∂∂= − + + − + ∂ ∂ ∂ ∂ ∂∂ 

♦ Navier-Stocks equations in cylindrical coordinates for constant density  

and viscosity
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θ - component:

z - component: 

6.4 Equations of Motion

r
r z

v v v v v v vv v
t r r r z
θ θ θ θ θ θρ

θ
∂ ∂ ∂ ∂ + + − + 
∂ ∂ ∂ ∂ 

( ){ } 2 2

2 2 2 2

1 1 21 rp v v vg rv
r r r r zr r

θ θ
θ θρ µ

θ θ θ
 ∂ ∂ ∂ ∂ ∂∂= − + + + + ∂ ∂ ∂ ∂ ∂∂ 

z z z z
r z

vv v v vv v
t r r z

θρ
θ

∂ ∂ ∂ ∂ + + + 
∂ ∂ ∂ ∂ 

2 2

2 2 2
1 1 z zz

z
p v vvg r
z r r r zr

ρ µ
θ

∂  ∂ ∂ ∂∂ = − + + +  ∂ ∂ ∂ ∂∂  
(6.29)



20/21

6.4 Equations of Motion

Continuity eq. for incompressible fluid

( ) ( ) ( )1 1 0r zvrv v
r r r zθθ

∂ ∂ ∂
+ + =

∂ ∂ ∂
(6.30)

Normal & shear stresses for constant density and viscosity

2 r
r

vp
r

σ µ ∂
= − +

∂

12 rv vp
r r

θ
θσ µ

θ
∂ = − + + 
∂ 

2 z
z

vp
z

σ µ ∂
= − +

∂
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6.4 Equations of Motion

1 r
r

vvr
r rr

θ
θτ µ

θ
∂ ∂  = +  ∂ ∂  

1 z
z

v v
z r
θ

θτ µ
θ

∂ ∂ = + ∂ ∂ 

r z
zr

v v
z r

τ µ ∂ ∂ = + ∂ ∂ 
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