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6.5 Examples of Laminar Motion 

- N-S equations are important in viscous flow problems.

♦ Laminar motion

~ orderly state of flow in which macroscopic fluid particles move in layers

~ viscosity effect is dominant

~ no-slip condition @ boundary wall

~ apply concept of the Newtonian viscosity

~ low Re

[Ex] 

1. Laminar flow between two parallel plates → Couette flow

2. Laminar flow through a tube (pipe) of constant diameter → Poiseuelle flow 
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6.5 Examples of Laminar Motion 

[Re] Reynolds number = inertial force / viscous force = destabilizing force / 

stabilizing force

• Viscous force 

~ dissipative

~ have a stabilizing or damping effect on the motion

~ use Reynolds number  

[Cf] Turbulent flow

~ unstable flow

~ instantaneous velocity is no longer unidirectional

~ destabilizing force > stabilizing force 

~ high Re
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2-D flow (x, z)         

steady flow            

parallel flow           

z-axis coincides with h

6.5.1 Laminar flow between two parallel plates
Consider the two-dimensional, steady, laminar flow between parallel plates 

in which either of two surfaces is moving at constant velocity and there is 

also an external pressure gradient.

♦ Assumptions:

6.5 Examples of Laminar Motion 
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6.5 Examples of Laminar Motion 
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6.5 Examples of Laminar Motion 

♦ External pressure gradient

1 2p p>

0p
x
∂

< →
∂

i) pressure gradient assists the viscously induced motion to 

overcome the  shear force at the lower surface

0p
x
∂
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∂

ii) pressure gradient resists the motion which is induced by the 

motion of  the upper surface

1 2p p<
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6.5 Examples of Laminar Motion 

Continuity eq. for two-dimensional, parallel flow:
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6.5 Examples of Laminar Motion 

N-S Eq.:
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Continuity eq. for incompressible fluid

2D flow

parallel flow

(6.31a)
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6.5 Examples of Laminar Motion 
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→ hydrostatic pressure distribution normal to flow

→ For any orientation of z -axis. in case of a parallel flow, pressure is 

distributed hydrostatically in a direction normal to the flow.

(6.31a): ~ independent of z

6.5 Examples of Laminar Motion 
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Integrate (A) twice w.r.t. z  to derive u(z)

Use the boundary conditions,

6.5 Examples of Laminar Motion 
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6.5 Examples of Laminar Motion 

ii) 
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6.5 Examples of Laminar Motion 

( ) 1
2

U a dp zu z u z z
a dx aµ

 = = − − 
 

(6.34)

Velocity
driven

Pressure
driven

i) If 0dp
dx

= Couette flow (plane Couette flow)→

Uu z
a

= (6.35)

→ driving mechanism = (velocity)U
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6.5 Examples of Laminar Motion 

ii) If 0U = 2-D Poiseuille flow (plane Poiseuille flow)→

( ) parabolic
1 ~

2
dpu z a z
dxµ

= − (6.36)

→ driving mechanism = external pressure gradient, dp
dx

max @
2
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2

max 8
a dpu

dxµ
= − (6.37)
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6.5 Examples of Laminar Motion 

V = average velocity 

(6.38)
2
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[Re] detail
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6.5 Examples of Laminar Motion 

[Re] Dimensionless form
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6.5 Examples of Laminar Motion 

[Cf] Couette flow in the narrow gap of a journal bearing

Flow between closely spaced concentric cylinders in which one 

cylinder is fixed and the other cylinder rotates with a constant 

angular velocity, ω

i

o i

U r
a r r

U
a

ω

τ µ

=

= −

≈



19/32

→ Hagen-Poiseuille flow 

→ Poiseuille flow:  steady laminar flow due to pressure drop along a tube

Assumptions:

– use cylindrical coordinates

6.5 Examples of Laminar Motion 

6.5.2 Laminar flow in a circular tube of constant diameter
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x
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6.5 Examples of Laminar Motion 

parallel flow     →  

Continuity eq.  → 

paraboloid   → 

steady flow  → 
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Eq. (6.29c) becomes

By the way, 

independent of r

6.5 Examples of Laminar Motion 
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6.5 Examples of Laminar Motion 

Then (A) becomes

( ) 1 zd vp h r
dz r r r

µγ
∂ ∂ =+  ∂ ∂ 

( )1 zd vrp h r
dz r r

γ
µ

∂ ∂ =+  ∂ ∂ 
(B)

Integrate (B) twice w.r.t. r  to derive vz(r)
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6.5 Examples of Laminar Motion 
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Using BCs

→ (C) : 

→ (D) : 
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24/32

6.5 Examples of Laminar Motion 

Then, substitute (D1) into (D) to obtain νz
piezometric
pressure

( ) ( )2 2
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dv r rp h
dz

γ
µ
 ∴ = − −+  

( )
22

0

0

1
4z
rd rv p h

dz r
γ

µ
  = − + −     

(6.39)

→ equation of a paraboloid of revolution
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(1) maximum velocity,

(2) mean velocity, Vz

6.5 Examples of Laminar Motion 
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6.5 Examples of Laminar Motion 
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[Cf] For 2 - D Poiseuille flow max
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V u=



27/32

6.5 Examples of Laminar Motion 

(3) Head loss per unit length of pipe 

Total head = piezometric head + velocity head

Here, velocity head is constant. 

Thus, total head loss = piezometric head change

( ) 2 2
0

1 8 32f z z
h V Vd p h
L r Ddz

µ µ
γ

γ γ γ
 ≡ = =− +  

(E)
where 0 diameter2D r= =
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6.5 Examples of Laminar Motion 

[Re] Consider Darcy-Weisbach Eq.

(F)
21

2
f z

h Vf
L D g
=

head loss due to friction= fh

friction  factorf =

Combine (6.42) and (F)
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2
32 1

2
z zV Vf

D D g
µ

γ
= (6.43)



29/32

Differentiate (6.39) w.r.t. r

6.5 Examples of Laminar Motion 

64 64 64
/ Rez z

f
V D V D

ν
ν

= = = → For laminar flow (6.44)

(4) Shear stress
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6.5 Examples of Laminar Motion 

Combine (G) and (H)
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dz
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Linear profile

(6.45)

At center and walls
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31

*
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32

( )2.0log 0 81 Re .f
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= −

2.0log 1 11 . 4d
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= +
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