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○ In Ch. 4, 1st law of thermodynamics 

→ 1D Energy eq.

→ Bernoulli eq. for steady flow of an incompressible fluid with zero 

friction (ideal fluid)

○ In Ch. 6, 

Newton's 2nd law → Momentum eq. → Eq. of motion (6.4) → Bernoulli eq. 

○ Irrotational flow = Potential flow

6.6 Irrotational Motion

Integration assuming irrotational flow (6.3)
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6.6.1 Velocity potential and stream function

If φ(x, y, z, t ) is any scalar quantity having continuous first and second 

derivatives, then by a fundamental vector identity 

[Detail] vector identity

6.6 Irrotational Motion

( ) ( ) 0curl grad φ φ→ ≡ ∇ × ∇ ≡

grad i j k
x y z
φ φ φφ φ ∂ ∂ ∂

∇ = = + +
∂ ∂ ∂



 

(6.46)
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6.6 Irrotational Motion

2 2 2 2 2 2

( )

0

i j k

curl grad
x y z

x y z

i j k
y z y z z x z x x y x y

φ

φ φ φ

φ φ φ φ φ φ

∂ ∂ ∂
=

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

     ∂ ∂ ∂ ∂ ∂ ∂
= − + − + − ⇒     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     



 



 
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By the way, for irrotational flow

Eq.(6.17) : 

Thus, from (6.46) and (A), we can say that for irrotational flow there 

must exist a scalar function φ whose gradient is equal to the velocity 

vector

Now, let's define the positive direction of flow is the direction in which φ is 

decreasing, then

6.6 Irrotational Motion

0q∇ × =


(A)

.q


grad qφ =


(B)

( , , , )q grad x y z tφ φ= − = −∇
 (6.47)
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where φ = velocity potential

→  Velocity potential exists only for 

irrotational flows; however stream function 

is not subject to this restriction. 

→ irrotational flow = potential flow for both 

compressible and incompressible fluids

6.6 Irrotational Motion

, ,u v w
x y z
φ φ φ∂ ∂ ∂

= − = − = −
∂ ∂ ∂

(6.47a)
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(1) Continuity equation for incompressible fluid

Eq. (6.5): 

Substitute (6.47) into (C)

→ Laplace Eq. 

← Cartesian coordinates

← Cylindrical coordinates

6.6 Irrotational Motion

0q∇ ⋅ =


(C)

( ) 2 0φ φ∴∇ ⋅ −∇ = −∇ =

2 2 2
2

2 2 2 0
x y z
φ φ φφ ∂ ∂ ∂

∇ = + + =
∂ ∂ ∂

2 2
2

2 2 2
1 1 0r
r r r r z

φ φ φφ
θ

∂ ∂ ∂ ∂ ∇ = + + = ∂ ∂ ∂ ∂ 

(6.48)

(6.49)

(6.50)
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6.6 Irrotational Motion

[Detail] velocity potential in cylindrical coordinates

, ,r zv v v
r r zθ
φ φ φ

θ
∂ ∂ ∂

= − = − = −
∂ ∂ ∂

(2) For 2-D incompressible irrotational motion

• Velocity potential

u
x

v
y

φ

φ

∂
= −

∂
∂

= −
∂

(6.51)
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6.6 Irrotational Motion

• Stream function:  Eq. (6.8)

u
y

v
x

ψ

ψ

∂
= −

∂
∂

=
∂

(6.52)

y x

x y

ψ φ

ψ φ

∂ ∂ = ∂ ∂ ∴ 
∂ ∂ = −

∂ ∂ 

→ Cauchy-Riemann equation (6.53)
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6.6 Irrotational Motion

Now, substitute stream function, (6.8) into irrotational flow, (6.17)

Eq. (6.17) : u v
y x

∂ ∂
=

∂ ∂
[ ]0 0rotation q← = ∇ × =



2 2 2 2

2 2 2 2 0
y x x y
ψ ψ ψ ψ∂ ∂ ∂ ∂

∴ − = → + =
∂ ∂ ∂ ∂

→ Laplace eq. 

Also, for 2-D incompressible flow, velocity potential satisfies the Laplace eq.

2 2

2 2 0
x y
φ φ∂ ∂

+ =
∂ ∂

(D)

(E)
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→ Both φ and ψ satisfy the Laplace eq. for 2-D incompressible 

irrotational motion.

→ φ and ψ  may be interchanged.

→ Lines of constant φ and ψ  must form an orthogonal mesh system 

→ Flow net

 Flow net analysis

Along a streamline, ψ = constant.

Eq. for a streamline, Eq. (2.10)

6.6 Irrotational Motion

.const

dy v
dx uψ =

= (6.54)
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6.6 Irrotational Motion

BTW along lines of constant velocity potential  

Substitute Eq. (6.47a)

0dφ→ =

0d dx dy
x y
φ φφ ∂ ∂

= + =
∂ ∂

.const

dy ux
dx v

yφ

φ

φ
=

∂
∂= − = −

∂
∂

(F)

(6.55)
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6.6 Irrotational Motion

From Eqs. (6.54) and (6.55)

. .const const

dy dx
dx dyψ φ= =

= − (6.56)

→ Slopes are the negative reciprocal of each other. 

→ Flow net analysis (graphical method) can be used when a solution of 

the Laplace equation is difficult for complex boundaries.
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6.6 Irrotational Motion

1ψ
2ψ
3ψ

1φ
2φ
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6.6 Irrotational Motion
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6.6 Irrotational Motion

1. Uniform flow

→ streamlines are all straight and parallel, and the magnitude of the 

velocity is constant

, 0U
x y

Ux C

φ φ

φ

∂ ∂
= − =

∂ ∂
= − +

'

, 0U
y x

Uy C

ψ ψ

ψ

∂ ∂
= − =

∂ ∂

= − +

Potential flows
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6.6 Irrotational Motion

2. Source and Sink

• Fluid flowing radially outward from a line through the origin 

perpendicular to the x-y plane

• Let m be the volume rate of flow emanating from the line (per unit 

length)

(2 )

2

r

r

r v m
mv

r

π

π

=

=

The streamlines are radial lines, 

and equipotential lines are concentric circles.
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6.6 Irrotational Motion

1, 0
2

ln
2

m
r r r

m r

φ φ
π θ

φ
π

∂ ∂
= =

∂ ∂

=

If m is positive, the flow is radially outward → source

If m is negative, the flow is radially inward → sink

1
2

2

r
mv

r r
m

ψ
θ π

ψ θ
π

∂
= =

∂

=
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6.6 Irrotational Motion

3. Vortex (Sec. 6.8)

Flow field in which the streamlines are concentric circles

In cylindrical coordinate

The tangential velocity varies inversely with 

distance from the origin. → free vortex

1 Kv
r r rθ

φ ψ
θ

∂ ∂
= = − =

∂ ∂

ln
K

K r
φ θ
ψ

=
= −
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6.6 Irrotational Motion

Free vortex
→ irrotational flow

Forced vortex
→ rotational flow
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Find velocity potential φ

Find ψ → Find flow pattern

6.6 Irrotational Motion

[Appendix II] Potential flow problem 

Find velocity

Find kinetic energy            
Find pressure, force

Bernoulli eq.
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6.6 Irrotational Motion

6.6.2 The Bernoulli equation for irrotational incompressible fluids

(1) Find the solution of N-S equation for  irrotational incompressible fluids

Substitute Eq. (6.17) into Eq. (6.28)

Eq. (6.17) : 0

w v
y z
u wq
z x
v u
x y

∂ ∂ = ∂ ∂ 
∂ ∂ ∇ × = = ∂ ∂ 
∂ ∂ = ∂ ∂ 



irrotational flow
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Eq. (6.28):  Navier-Stokes eq. ( x -comp.) for irrotational incompressible fluid

6.6 Irrotational Motion

21
2

v
x

∂
∂

21
2

w
x

∂
∂

2 2 2

2 2 2
1u u u u h p u u uu v w g

t x y z x x x y z
µ

ρ ρ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − − + + + 

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

21
2

u
x

∂
∂

vv
x

∂
∂

ww
x

∂
∂

2v
y x
∂

∂ ∂

2w
z x

∂
∂ ∂

2 2 2 1
2 2 2

u u v w h p u v wg
t x x x x x y z

µ
ρ ρ

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = − − + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

(6.57)
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Substitute  q2 = u2 +v2 +w2  and continuity eq. for incompressible fluid into 

Eq. (6.57)

Continuity eq., Eq. (6.5): 

Then, viscous force term can be dropped.

→  x - Eq.

6.6 Irrotational Motion

0u u uq
x y z

∂ ∂ ∂
∇ ⋅ = + + =

∂ ∂ ∂


2 1
2

u q h pg
t x x xρ

 ∂ ∂ ∂ ∂
+ = − − ∂ ∂ ∂ ∂ 

2

0
2

u q pgh
t x ρ

 ∂ ∂
+ + + = ∂ ∂  
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6.6 Irrotational Motion

2

. 0
2

v q py Eq gh
t y ρ

 ∂ ∂
− + + + = ∂ ∂  

2

. 0
2

w q pz Eq gh
t z ρ

 ∂ ∂
− + + + = ∂ ∂  

(6.58)

(6.59)

Introduce velocity potential φ , ,u v w
x y z
φ φ φ∂ ∂ ∂

= − = − = −
∂ ∂ ∂

2 2 2

, ,u v w
t t x t t y t t z

φ φ φ∂ ∂ ∂ ∂ ∂ ∂
= − = − = −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
(A)
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6.6 Irrotational Motion

Substituting (A) into (6.59) yields

2

0 .
2
q pgh x Eq

x t
φ

ρ
 ∂ ∂
− + + + = − ∂ ∂ 

2

0 .
2
q pgh y Eq

y t
φ

ρ
 ∂ ∂
− + + + = − ∂ ∂ 

2

0 .
2
q pgh z Eq

z t
φ

ρ
 ∂ ∂
− + + + = − ∂ ∂ 

(B)
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6.6 Irrotational Motion

Integrating (B) leads to Bernoulli eq.

( )
2

2
q pgh F t

t
φ

ρ
∂

− + + + =
∂

(6.60)

~ valid throughout the entire field of irrotational motion

For a steady flow; 0; ( )F t C
t
φ∂

= =
∂

2

.
2
q pgh const

ρ
+ + = (6.61)

→ Bernoulli eq. for a steady, irrotational flow of an incompressible fluid 
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Dividing (6.61) by g (acceleration of gravity) 

gives the head terms

H = total head at a point; constant for entire flow field of irrotational motion

(for both along and normal to any streamline) 

→ point form of 1- D Bernoulli Eq. 

p, H, q = values at particular point → point values in flow field

6.6 Irrotational Motion

2

.
2
q ph const
g γ

+ + =

2 2
1 1 2 2

1 22 2
q p q ph h H
g gγ γ

+ + = + + = (6.62)
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[Cf] Eq. (4.26)

H = constant along a stream tube

→ 1-D form of 1-D Bernoulli eq.

p, h, V = cross-sectional average values at each section → average values

• Assumptions made in deriving Eq. (6.62)

→ incompressibility + steadiness + irrotational motion+ constant viscosity 

(Newtonian fluid)

6.6 Irrotational Motion

2 2
1 1 2 2

1 22 2
p V p Vh h H

g gγ γ
+ + = + + = 1V 2V
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In Eq. (6.57), viscosity term dropped out because                 (continuity Eq.).

→ Thus, Eq. (6.62) can be applied to either a viscous or inviscid fluid.  

• Viscous flow

Velocity gradients result in viscous shear. 

→ Viscosity causes a spread of vorticity (forced vortex).

→ Flow becomes rotational.

→ H in Eq. (6.62) varies throughout the fluid field. 

→ Irrotational motion takes place only in a few special cases (irrotational

vortex).

6.6 Irrotational Motion

0q∇ ⋅ =

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6.6 Irrotational Motion

potential flow

rotational flow
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6.6 Irrotational Motion

• Boundary layer flow (Ch. 8)

i) Flow within thin boundary layer - viscous flow- rotational flow 

→ use boundary layer theory

ii) Flow outside the boundary layer - irrotational (potential) flow 

→ use potential flow theory
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6.6 Irrotational Motion

• Irrotational motion can never become rotational as long as only 

gravitational and pressure force acts on the fluid particles (without shear 

forces).

→ In real fluids, nearly irrotational flows may be generated if the motion is 

primarily a result of pressure and gravity forces. 

[Ex] free surface wave motion generated by pressure forces (Fig. 6.8)

flow over a weir under gravity forces (Fig. 6.9)
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6.6 Irrotational Motion

• Vortex motion

i) Forced vortex - rotational flow 

~ generated by the transmission of tangential 

shear stresses

→ rotating cylinder

ii) Free vortex - irrotational flow

~ generated by the gravity and pressure

→ drain in the tank bottom, tornado, hurricane
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