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For inviscid flow

→ Assume no frictional (viscous) effects but compressible fluid flows 

→ Bernoulli eq. can be obtained by integrating Navier-Stokes equation

along a streamline.

Eq. (6.24a):  N-S eq. for ideal compressible fluid (µ = 0) 

6.7 Frictionless Flow

6.7.1 The Bernoulli equation for flow along a streamline
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→ Euler's equation of motion for inviscid (ideal) fluid flow

Substituting (6.26a) into (6.63) leads to

Multiply        (element of streamline length) and integrate along the streamline
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Thus, Eq. (6.66) becomes
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Divide by g

For incompressible fluids, ρ = const. 

2

.
2

dp qgh const
ρ

+ + =∫ along a streamline (6.68)
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.
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p qgh const
ρ

+ + =

2

2
p qh C

gγ
+ + = along a streamline (6.69)
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→ Bernoulli equation for steady, frictionless, incompressible fluid flow

→ Eq. (6.69) is identical to Eq. (6.22). Constant C is varying from one 

streamline to another in a rotational flow, Eq. (6.69); it is invariant 

throughout the fluid for irrotational flow, Eq. (6.22).

6.7.2 Summary of Bernoulli equation forms
• Bernoulli equations for steady, incompressible flow

1) For irrotational flow

constant throughout the flow field
2

2
p qH h

gγ
= + + = (6.70)
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2) For frictionless flow (rotational)

2

2
p qH h

gγ
= + + = constant along a streamline (6.71)

3) For 1-D frictionless flow (rotational)

2

2
p VH h Ke

gγ
= + + = constant along finite pipe (6.72)

4) For steady flow with friction ~ include head loss hL

6.7 Frictionless Flow
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g gγ γ
+ + = + + + (6.73)
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6.7.3 Applications of Bernoulli's equation to flows of real fluids
(1) Efflux from a short tube

• Zone of viscous action (boundary layer):  frictional effects cannot be 

neglected.

• Flow in the reservoir and central core of the tube:  primary forces are 

pressure and gravity forces. → irrotational flow

• Apply Bernoulli eq. along the centerline streamline between (0) and (1)

6.7 Frictionless Flow
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p0 = hydrostatic pressure = γd0 , p1 = patm →         = 0 

q0 = 0 (neglect velocity at the large reservoir)

→ Torricelli’s result

2 2
0 0 1 1

0 12 2
p q p qz z

g gγ γ
+ + = + +

1gage
p

0 1z z=

2
1

02
q d
g

∴ =
1 02q gd= (6.74)

6.7 Frictionless Flow

If we neglect thickness of the zone of viscous influence
2
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DQ qπ
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• Selective withdrawal:  Colder water is withdrawn into the intake channel 

with a velocity q1 (uniform over the height b1 ) in order to provide cool 

condenser water for thermal (nuclear) power plant. 

(2) Stratified flow

6.7 Frictionless Flow

During summer months, large 

reservoirs and lakes become 

thermally stratified. 

→ At thermocline, temperature 

changes rapidly with depth.
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Apply Bernoulli eq. between points (0) and (1)

(6.75)

p0 = hydrostatic pressure = (γ – ∆γ)(d0 – a0)
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(6.76)
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For isothermal (unstratified) case, a0 = d0

1 2q g h= ∆ → Torricelli’s result (6.78)

6.7 Frictionless Flow
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(3) Velocity measurements with the Pitot tube (Henri Pitot, 1732)

→ Measure velocity from stagnation or impact pressure 

(6.79)

(6.80)
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• Pitot-static tube 

( )0
0

2 sp p
q

ρ
−

= (A)

By the way,

1 2 0s mp p h p p hγ γ= + ∆ = = + ∆

( )0s mp p h γ γ− = ∆ −

Combine (A) and (B)
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0
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