1/20

Chapter 6 Equations of Continuity and Motion
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Session 6-3 Motions of viscous and inviscid fluids
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6.7 Frictionless Flow

6.7.1 The Bernoulli equation for flow along a streamline

For inviscid flow

- Assume no frictional (viscous) effects but compressible fluid flows

— Bernoulli eq. can be obtained by integrating Navier-Stokes equation

along a streamline.

Eq. (6.24a): N-S eq. for ideal compressible fluid («=0)

pg - VP+W2/+/§}W/) p—+p (G-V)§

_vp &g
g-~2 = (g-v (6.63)

p ot
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— Euler's equation of motion for inviscid (ideal) fluid flow

ﬁ g=—-gVh

Substituting (6.26a) into (6.63) leads to

Vp A0 . s
—gVh——=—+((q-V
g & (G-V)g (6.64)

/ idx + jdy + kdz

Multiply dr (element of streamline length) and integrate along the streamline

—

_gj Vh-df—j %Vp-dF:j (@—q)-dmj [(G-V)d |-dF+C(t) (6.65)
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By the way,

1 =dr-v =20 gy 20
OX ay 0z
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Thus, Eq. (6.66) becomes

9 gn e & (%) gro
| p +gh+= +| (atj dr =—C(t) (6.67)

For steady motion, a =0:C (t) > C

ot
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dp q° .
j —+gh+ 7 =const. along a streamline (6.68)
Yo,

For incompressible fluids, p = const.

2

L gh +3 —const.
o, 2
Divide by g
Pon 9 -
+h+—=C along a streamline (6.69)
y 29
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— Bernoulli equation for steady, frictionless, incompressible fluid flow

— Eq. (6.69) is identical to Eq. (6.22). Constant Cis varying from one

streamline to another in a rotational flow, Eq. (6.69); it is invariant

throughout the fluid for irrotational flow, Eq. (6.22).

6.7.2 Summary of Bernoulli equation forms

 Bernoulli equations for steady, incompressible flow

1) For irrotational flow

P

2

9

H="+h+ oa = constant throughout the flow field (6.70)
/4 g
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2) For frictionless flow (rotational)

2
H = E +h+ 2— = constant along a streamline (6.71)
/4 9

3) For 1-D frictionless flow (rotational)

V 2
H = P + h + Ke— = constant along finite pipe (6.72)
y 29
4) For steady flow with friction  ~ include head loss A,
2 2
&+h1+q1 :pz+h2+q—2+hL (6.73)

14 29 29
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6.7.3 Applications of Bernoulli's equation fo flows of real fluids
(1) Efflux from a short tube

« Zone of viscous action (boundary layer): frictional effects cannot be

neglected.

* Flow in the reservoir and central core of the tube: primary forces are

pressure and gravity forces. — irrotational flow

» Apply Bernoulli eq. along the centerline streamline between (0) and (1)

e of visau influesce = F (L) = rotational
d, Fow
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e of visdua inClugsce = B (L) = rotational

2 d,i FHou!

&4_2 _|_q pl-I-Z +CI_1 @J,__ —/

y 29 7 29 Fﬁ

P = hydrostatic pressure =vyay, Py = Pam = P1

gage

g, = 0 (neglect velocity at the large reservoir)

2
" g—lg =d, g, =4/29d, - Torricelli’s result (6.74)

If we neglect thickness of the zone of viscous influence

Q=

7zD2
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(2) Stratified flow < %
DVQ
During summer months, large o N9
: e v ; e
reservoirs and lakes become ermocing nterfuce | @ . fnteke - channel
- L LD
thermally stratified. [ N R ——
Datum | _ - - T | M T EEEs
- At thermocline, temperature S I |
. R_e_}_se:yohf e y
changes rapidly with depth. S FIG. 6-11. Cold water intoke from

a stratified reservoir,

» Selective withdrawal: Colder water is withdrawn into the intake channel

with a velocity g, (uniform over the height 6, ) in order to provide cool

condenser water for thermal (nuclear) power plant.
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Apply Bernoulli eq. between points (0) and (1)

2 2

& + ao + q() = pl + bl + q_l (675) Thenodine interface 0 Toa
20 7 29 R

q, =0

Po = hydrostatic pressure = (y— Ay)(d, — &)

plzy(dO_Ah_bl)

(6.76)

0, Ay

g Z=Ah—7(d0 -a,)

o {ZQ{A —ﬂ(d0 —ao)H2 (6.77)
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For isothermal (unstratified) case, a, = q,

0, =+/29Ah - Torricelli’'s result (6.78)
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(3) Velocity measurements with the Pitot tube (Henri Pitot, 1732)

— Measure velocity from stagnation or impact pressure

2
&+ho+q° = pS+hs+ d
y 29 7y g

hy=h,, g,=0 (6.79)
2
zg 7/ Po
|
_ {Fituttube
Air — . 150 mmH{
PorVo Static tube - |
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 Pitot-static tube
2o

2( ps B po) ” — |
Uo = \/ (A) | Pitotune comnl|TF
p :tatic tube S | +H !

By the way,

p, =P, +yAh=p, =p, +7;

ps_pO:Ah(ym_y) (B)
Combine (A) and (B)

0 :\/ZAh(ym ~7)

yo,
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Stagnation Stagnation
pressure at pressure on
tip stem
0 2 B
2 Static o
pressure e
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Four static pressure ports

Heated outer case

Stagnation
pressure port

‘ Mounting flange

Stagnation pressure fitting }

b“ Static pressure fitting
Heater leads —" b
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