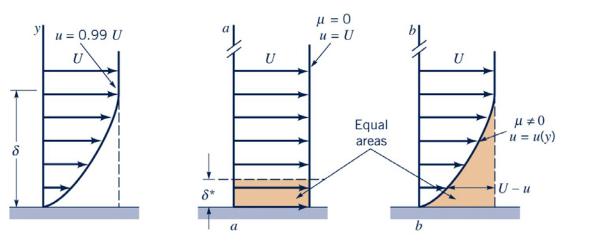


Turbulent Boundary-Layer Flows



Contents

- 9.1 Introduction
- 9.2 Structure of a turbulent boundary layer
- 9.3 Mean-flow characteristics for turbulent boundary layer

Objectives

- Study wall turbulence
- Derive equations of velocity distribution and friction coefficient for both smooth and rough walls

9.3.2. Power-law formulas: Smooth walls

- Logarithmic equations for velocity profile and shear-stress coeff .
- ~ universal
- ~ applicable over almost entire range of Reynolds numbers
- Power-law equations
- ~ applicable over only limited range of Reynolds numbers
- ~ simpler
- ~ explicit relations for \overline{u}/U and c_f
- ~ <u>explicit relations for δ in terms of *Re* and distance *x*</u>

Assumptions of power-law formulas

The power laws stem from two facts that hold for turbulent boundary

layers with negligible pressure gradients when Re_{δ} = $\frac{U\delta}{V} < 5 \times 10^5$

i) Except very near the wall, mean velocity is closely proportional to a root of the distance y from the wall.

$$\overline{u} \propto y^{\frac{1}{n}}$$
 (A)

ii) Shear stress coeff. c_f is inversely proportional to a root of Re_{δ}

$$c_f \propto \frac{1}{\operatorname{Re}_{\delta}^m}$$
, $\operatorname{Re}_{\delta} = \frac{U\delta}{v}$
 $c_f = \frac{A}{\left(\frac{U\delta}{v}\right)^m}$
(9.29)

where n, A = constants; m = fraction

[Cf] Eq. (9.29) is similar to equation for laminar boundary layer, $c_f = \frac{3.32}{\text{Re}_s}$

Derivation of power equation Combine Eqs. (9.18) and (9.29) $c_f = \frac{1}{\left(\frac{U\delta}{U}\right)^m}$ (9.18): $u_* = U_{\sqrt{\frac{c_f}{2}}}$ $\therefore \frac{U}{u_*} = \sqrt{\frac{2}{c_*}} = \frac{\sqrt{2}}{\sqrt{4}} \left(\frac{U\delta}{\nu}\right)^{\frac{m}{2}}$ $\frac{U^{1-\frac{m}{2}}}{u} = \frac{\sqrt{2}}{\sqrt{4}} \left(\frac{\delta}{u}\right)^{\frac{m}{2}}$ $\left(\frac{U}{u^*}\right)^{1-\frac{m}{2}} = \sqrt{\frac{2}{A}} \left(\frac{u_*\delta}{\nu}\right)^{\frac{m}{2}}$ $\therefore \quad \frac{U}{u} = B\left(\frac{u_*\delta}{\nu}\right)^{\frac{m}{2-m}}$

(9.30)

Assume \overline{u} depends on *y* by the same relation, Eq. (9.30), replacing δ with *y*

$$\frac{\overline{u}}{u_*} = B\left(\frac{u_*y}{\nu}\right)^{\frac{m}{2-m}}$$
(9.31)

Divide (9.31) by (9.30)

$$\frac{\overline{u}}{U} = \left(\frac{y}{\delta}\right)^{\frac{m}{2-m}}$$
(9.32)

This result indicates that <u>all profiles are similar</u> and can be represented by a single dimensionless curve like laminar boundary layer profile shown in Fig. 10.4.

However, turbulent profiles are not truly similar, so Eq. (9.32) will apply for

different Reynolds number ranges only if the constant *m* is varied.

Boundary-layer measurements shows that

For 3,000 < Re_{$$\delta$$} < 70,000; $m = \frac{1}{4}$, $A = 0.0466$, $B = 8.74$
 $\frac{\overline{u}}{\overline{U}} = \left(\frac{y}{\delta}\right)^{\frac{1}{7}}$
(9.33)
 $\frac{U}{u_*} = 8.74 \left(\frac{u_*\delta}{\nu}\right)^{\frac{1}{7}}$
(9.34)
 $\overline{u}_* = 8.74 \left(\frac{u_*y}{\nu}\right)^{\frac{1}{7}}$
(9.35)
 $c_f = \frac{0.0466}{(Re_{\delta})^{\frac{1}{4}}}$
(9.36)

[Re] The Blasius solution for laminar boundary layer flows

For steady laminar flow over a flat plate <u>with zero pressure gradient</u>, Prandtl's (1904) 2-D boundary-layer equations become as follows:

$$u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y} = \frac{\mu}{\rho}\frac{\partial^2 u}{\partial y^2}, \qquad \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$$
(1)

Blasius (1908) obtained the solution to above PDE by assuming <u>similar profiles</u> along the plate at every <u>x</u>

$$\frac{u}{U} = F\left(\frac{y}{\delta}\right)$$
(2)
$$\delta \sim \frac{x}{\operatorname{Re}_{x}^{1/2}}$$
(3)

Blasius obtained the solution in the form of power series after he introduced a stream function for $\frac{y}{\delta}$

Blasius, H. (1883-1970): Prandtl's student

Laminar boundary layer equations

$$\begin{split} & \delta_{lam} = \frac{5x}{\operatorname{Re}_{x}^{1/2}} \ at \frac{u}{U} = 0.992 \\ & \delta^{*}_{lam} = \frac{1.73x}{\operatorname{Re}_{x}^{1/2}} \\ & \theta_{lam} = \frac{0.664x}{\operatorname{Re}_{x}^{1/2}} \\ & c_{f} = \frac{0.664}{\left(Re_{x}\right)^{\frac{1}{2}}} \\ & c_{f} = \frac{3.32}{\operatorname{Re}_{\delta}} \\ & C_{f} = \frac{1.328}{\left(Re_{l}\right)^{\frac{1}{2}}} \end{split}$$

Relation for δ

Adopt integral-momentum eq. for steady motion with $\frac{\partial p}{\partial x} = 0$

~ integration of Prandtl's 2-D boundary-layer equations

$$\frac{\tau_0}{\rho} = U^2 \frac{\partial \theta}{\partial x} = c_f \frac{U^2}{2} \leftarrow \tau_0 = \frac{\rho}{2} c_f U^2$$
(9.37)

where θ = momentum thickness

$$\theta = \int_{0}^{h} \frac{\overline{u}}{U} \left(1 - \frac{\overline{u}}{U} \right) dy$$
(A)

Substitute Eq. (9.33) into (A) and integrate

$$\theta = \int_{0}^{h} \left(\frac{y}{\delta} \right)^{\frac{1}{7}} \left\{ 1 - \left(\frac{y}{\delta} \right)^{\frac{1}{7}} \right\} dy$$

$$= \frac{7}{72} \delta \approx 0.1\delta$$
(9.38)

Substitute Eqs. (9.36) and (9.38) into (9.37) and integrate w.r.t. x

$$\delta = \frac{0.318x}{\left(\frac{Ux}{\nu}\right)^{\frac{1}{5}}} = \frac{0.318x}{\left(\operatorname{Re}_{x}\right)^{\frac{1}{5}}} , \quad \operatorname{Re}_{x} < 10^{7}$$

$$c_{f} = \frac{0.059}{\left(\operatorname{Re}_{x}\right)^{\frac{1}{5}}} , \quad \operatorname{Re}_{x} < 10^{7}$$

$$(9.39)$$

Integrate (9.40) over whole length, /, to get average coefficient

$$C_{f} = \frac{0.074}{\left(\text{Re}_{l}\right)^{\frac{1}{5}}}$$
, $\text{Re}_{l} < 10^{7}$ (9.41)

[Re] Derivation of (9.39) and (9.40)

$$U^{2} \frac{\partial \theta}{\partial x} = c_{f} \frac{U^{2}}{2}$$
$$\frac{\partial \theta}{\partial x} = \frac{c_{f}}{2}$$

Substitute (9.38) and (9.36) into (B)

$$\frac{\partial}{\partial x} \left(\frac{7}{72}\delta\right) = \frac{1}{2} \left(0.0466 / (\operatorname{Re}_{\delta})^{\frac{1}{4}}\right)$$
$$\frac{7}{72} \quad \frac{\partial\delta}{\partial x} = \frac{0.0233}{\left(\operatorname{Re}_{\delta}\right)^{\frac{1}{4}}} = \frac{0.0233}{\left(\frac{U\delta}{\nu}\right)^{\frac{1}{4}}}$$
$$\frac{\partial\delta}{\partial x} = \frac{0.2397}{\left(\frac{U\delta}{\nu}\right)^{\frac{1}{4}}}$$

12/28

(B)

Integrate once w.r.t. x

$$\delta = \frac{0.2397}{\left(\frac{U\delta}{\nu}\right)^{\frac{1}{4}}}x + C$$

B.C.:
$$\delta \cong 0$$
 at $x = 0$

$$0 = \frac{0.2397}{\left(\frac{U\delta}{\nu}\right)^{\frac{1}{4}}} 0 + C \quad \longrightarrow \quad C = 0$$

$$\delta = \frac{0.2397}{\left(\frac{U\delta}{\nu}\right)^{\frac{1}{4}}}x$$

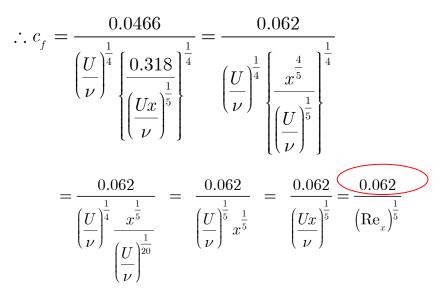
$$\delta^{\frac{5}{4}} = \frac{0.2397}{\left(\frac{Ux}{\nu}\right)^{\frac{1}{4}}} x^{\frac{5}{4}}$$

$$\therefore \delta = \left\{ \frac{0.2397}{\left(\frac{Ux}{\nu}\right)^{\frac{1}{4}}} x^{\frac{5}{4}} \right\}^{\frac{4}{5}} = \frac{(0.2397)^{\frac{4}{5}}}{\left(\frac{Ux}{\nu}\right)^{\frac{1}{5}}} x$$
$$\therefore \delta = \frac{0.318}{\left(\frac{Ux}{\nu}\right)^{\frac{1}{5}}} x = \frac{0.318}{\left(\operatorname{Re}_{x}\right)^{\frac{1}{5}}} x \to \operatorname{Eq.}(C)(9.39)$$

(9-36):
$$c_f = \frac{0.0466}{\left(\operatorname{Re}_{\delta}\right)^{\frac{1}{4}}} = \frac{0.0466}{\left(\frac{U\delta}{\nu}\right)^{\frac{1}{4}}}$$

(C)

Substitute (9.39) into (C)



→ (9.40)

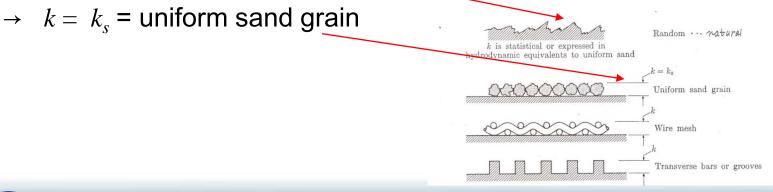
Integrate (9.40) over *l*

$$C_{f} = \frac{1}{l} \int_{0}^{l} \frac{0.062}{\left(\operatorname{Re}_{x}\right)^{\frac{1}{5}}} dx = \frac{0.062}{l} \int_{0}^{l} \frac{1}{\left(\frac{Ux}{\nu}\right)^{\frac{1}{5}}} dx \frac{0.062}{l\left(\frac{U}{\nu}\right)^{\frac{1}{5}}} \int_{0}^{l} \frac{1}{x^{\frac{1}{5}}} dx = \underbrace{0.076}_{\left(\operatorname{Re}_{l}\right)^{\frac{1}{5}}}$$

9.3.3. Laws for rough walls

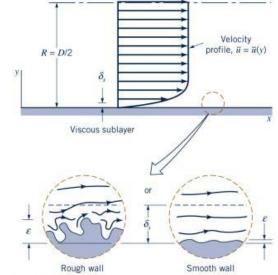
(1) Effects of roughness

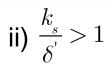
- Rough walls:
- Velocity distribution and resistance = *f*(Reynolds number, roughness)
- Smooth walls:
- velocity distribution and resistance = *f*(Reynolds number)
- For natural roughness, k is random, and statistical quantity



- Measurement of roughness effects
 - a) experiments with sand grains cemented to smooth surfaces Nikuradse
 - b) evaluate roughness value = height k_s
 - c) compare hydrodynamic behavior with other types and magnitude of roughness
- Effects of roughness
- $\mathbf{i)} \quad \frac{k_s}{\delta'} < 1$
- ~ roughness has negligible effect on the wall shear
- → <u>hydrodynamically smooth</u>

 $\delta' = \frac{4\nu}{u_*}$ = laminar sublayer thickness



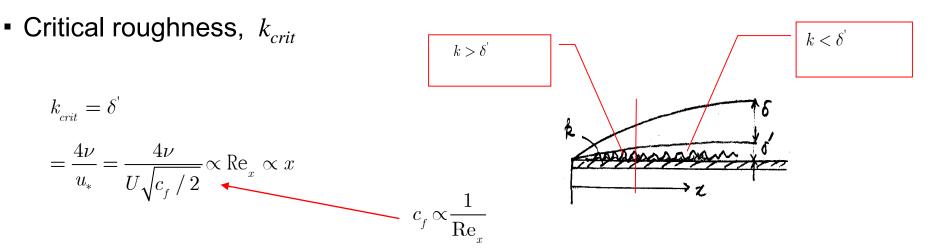


- ~ roughness effects appear
- ~ roughness disrupts the laminar sublayer
- ~ smooth-wall relations for velocity and C_f no longer hold
- → <u>hydrodynamically rough</u>

iii)
$$\frac{k_s}{\delta'} > 15 \sim 25$$

~ friction and velocity distribution <u>depend only on roughness</u>rather than Reynolds number

→ <u>fully rough flow</u> condition



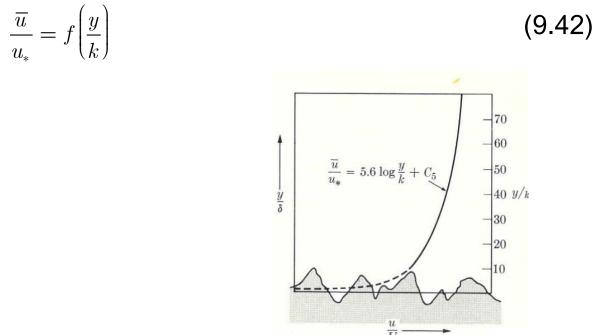
If *x* increases, then c_f decreases, and δ' increases.

Therefore, for a surface of uniform roughness, it is possible to be <u>hydrodynamically rough upstream</u>, and <u>hydrodynamically smooth</u> downstream.

(2) Rough-wall velocity profiles

Assume roughness height k accounts for magnitude, form, and

distribution of the roughness. Then



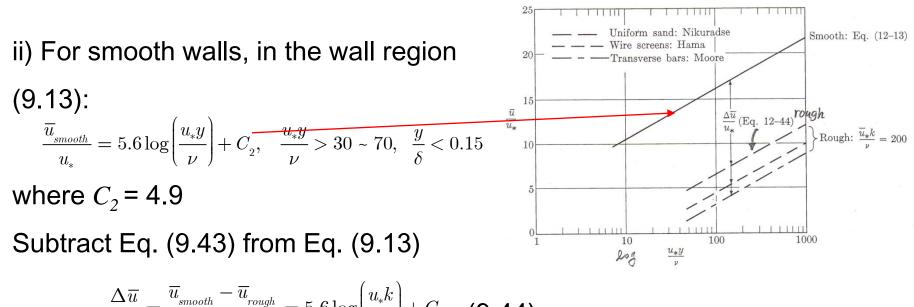
Make *f* in Eq. (9.42) be a <u>logarithmic function</u> to overlap the <u>velocity-</u> <u>defect law</u>, Eq. (9.16), which is <u>applicable for both rough and smooth</u> <u>boundaries</u>.

(9.16):
$$\frac{U - \overline{u}}{u_*} = 5.6 \log\left(\frac{y}{\delta}\right) + 2.5, \quad \frac{y}{\delta} < 0.15$$

i) For rough walls, in the wall region

$$\frac{\overline{u}_{rough}}{u_{*}} = -5.6 \log\left(\frac{k}{y}\right) + C_{5}, \quad \frac{u_{*}y}{\nu} > 50 \sim 100, \quad \frac{y}{\delta} < 0.15$$
(9.43)

where C_5 = constant = f(size, shape, distribution of the roughness)



$$\frac{\Delta \overline{u}}{u_*} = \frac{\overline{u}_{smooth} - \overline{u}_{rough}}{u_*} = 5.6 \log \left(\frac{u_* k}{\nu}\right) + C_6 \quad (9.44)$$

 \rightarrow Roughness reduces the local mean velocity \overline{u} in the wall region

where C_5 and $C_6 \rightarrow$ Table 9-4

TABLE 12-4

VALUES OF CONSTANTS IN ROUGH-WALL EQUATIONS FOR THE WALL REGION

 $(y/\delta < 0.15; u_*k/\nu > 50 \text{ to } 100)$

Roughness type	Source of data	$C_5,$ Eq. (12–43)	C ₆ , Eq. (12–44)	C ₈ , Eq. (12–46)
Uniform sand grains	Nikuradse [11] (pipes)	8.2	-3.3	7.55
Wire screens	Hama [12] (plates)	. 6.1	-1.2	6.1
Transverse bars	Moore [7] (plates)	4.9	0	5.25
Eq. (1 Eq. (1 Eq. (1	2–44): $\Delta \overline{u}/u_*$	$= -5.6 \log (k/k) = 5.6 \log (u_*/k) = 3.96 \log (\delta/k)$	$k/\nu)+C_6,$	1

(Constants in this table were evaluated graphically from Fig. 12-12.)

(3) Surface-resistance formulas: rough walls

Combine Eqs. (9.43) and (9.16)

$$\begin{split} \frac{U-\overline{u}}{u_*} &= -5.6 \log\left(\frac{y}{\delta}\right) + 2.5 \ , \quad \frac{y}{\delta} < 0.15 \\ + \left| \begin{array}{c} \frac{\overline{u}}{u_*} &= -5.6 \log\left(\frac{k}{y}\right) + C_5 \\ \end{array} \right| \\ \rightarrow \quad \frac{U}{u_*} &= -5.6 \log\left(\frac{\delta}{k}\right) + C_7 \\ \\ \therefore \frac{U}{u_*} &= \sqrt{\frac{2}{c_f}} = 5.6 \log\left(\frac{\delta}{k}\right) + C_7 \\ \end{array} \\ \hline \left| \begin{array}{c} \frac{1}{\sqrt{c_f}} &= 3.96 \log\left(\frac{\delta}{k}\right) + C_8 \end{array} \right| \end{split}$$

(9.45)

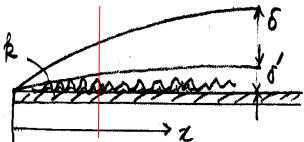
(9.46)

[Ex. 9.3] Rough wall velocity distribution and local skin friction coefficient
Comparison of the boundary layers on a smooth plate and a plate
roughened by sand grains

• Given: $\tau_0 = 0.485 \ lb \ /ft^2$ on both plates $U = 10 \ ft \ /sec$ past the rough plate

 $k_s = 0.001 \text{ ft}$

Water temp. = 58 °F on both plates



(a) Velocity reduction Δu due to roughness From Table 1-3:

 $ho=1.938~slug~/~ft^{3}$; $u=1.25 imes10^{-5}ft^{2}/\sec$

Eq. (9.18) $\therefore u_* = \sqrt{\frac{\tau_0}{\rho}} = \sqrt{\frac{0.485}{1.938}} = 0.5 ft / sec$ $c_f = 2 \left(\frac{u_*}{U}\right)^2 = 2 \left(\frac{0.5}{10}\right)^2 = 0.005$ $\frac{u_*k_s}{\nu} = \frac{0.5(0.001)}{1.25 \times 10^{-5}} = 40$ Eq. (9.44): $\frac{\Delta u}{u} = 5.6 \log \left(\frac{u_* k_s}{u} \right) - 3.3$ $\therefore \Delta u = 0.5 \{ 5.6 \log 40 - 3.3 \} = 2.83 ft / sec$

(b) Velocity \overline{u} on each plate at y = 0.007 ft

i) For rough plate

Eq. (9.43):
$$\frac{\overline{u}}{u_*} = 5.6 \log \frac{y}{k} + 8.2$$

 $\therefore \overline{u} = 0.5(5.6 \log \frac{0.007}{0.001} + 8.2) = 6.47 \text{ ft / sec}$

ii) For smooth plate,

Eq. (9.13):
$$\frac{\overline{u}}{u_*} = 5.6 \log \frac{u_* y}{\nu} + 4.9$$

 $\frac{u_* y}{\nu} = \frac{0.5(0.007)}{1.25 \times 10^{-5}} = 280$
 $\therefore \overline{u} = 0.5\{5.6 \log(280) + 4.9\} = 9.3 ft / sec$

Check $\Delta \overline{u} = 9.3 - 6.47 = 2.83 \rightarrow \text{same result as (a)}$

(c) Boundary layer thickness δ on the rough plate Eq. (9.46):

$$\frac{1}{\sqrt{c_f}} = 3.96 \log \frac{\delta}{k_s} + 7.55$$
$$\therefore \log \frac{\delta}{k_s} = \frac{1}{3.96} \left\{ \frac{1}{\sqrt{0.005}} - 7.55 \right\} = 1.66$$
$$\therefore \frac{\delta}{k_s} = 46 \implies \delta = 0.046 \text{ ft} = 0.52 \text{ in} = 1.4 \text{ cm}$$

