#### **Fusion and Radiation Issues**

D + T → <sup>4</sup>He (3.5MeV) + n (14.1MeV)  
T (t<sub>1/2</sub> = 12.3 yr) → <sup>3</sup>He + e<sup>-</sup> (5.7 keV)+ 
$$\overline{v_e}$$

Table 3.2. Effective microscopic cross-sections for reactions producing tritium or precursors<sup>a</sup>

|   | Reaction                                                                  | ơ <sub>eff</sub> (10 <sup>−28</sup> m <sup>2</sup> ) |
|---|---------------------------------------------------------------------------|------------------------------------------------------|
|   | <sup>2</sup> H(n,y)T                                                      | 0.000316                                             |
|   | <sup>6</sup> Li(n,α)T                                                     | 693                                                  |
|   | <sup>7</sup> Li(n,na)T                                                    | 0.0516                                               |
|   | <sup>10</sup> B(n,a)Li                                                    | 3060                                                 |
|   | $10_{B(n,2\alpha)T}$                                                      | 1.27                                                 |
| 1 |                                                                           |                                                      |
|   | <sup>a</sup> From ref. 37. [Bell, 1973]                                   |                                                      |
| Y | Also, 3He(n, p) H production<br><sup>b</sup> From ref. 53 [Fischer, 1977] | 5237 barn                                            |

In addition to biological shielding, reactor material activation requires

- ✓ Radiation shielding
- ✓ Remote handling
- ✓ Earlier recyclable reactor design

Internal tritium doses are hazardous, but
 Short biological half-life : ~ 10 days

 ${}^{6}\text{Li} + n \rightarrow {}^{4}\text{He} (2.05\text{MeV}) + T (2.73\text{MeV})$   ${}^{7}\text{Li} + n \rightarrow {}^{4}\text{He} + T + n - 2.47 \text{ MeV}$ 

Tritium cycle is internally closed
 Total tritium inventory: ~ a few kg

## **Radiation Safety and Environmental Issues for Fusion**

#### **Considerations for radiation safety and licensing**

- Postulated accident scenarios
- Environmental radiation releases during operation
- Occupational radiation exposure
- Radioactive waste

#### Safety functions

- Confinement of radioactive material
- > Limitation of exposure to ionizing radiation

- > Tritium cycle is internally closed
  - ✓ Total tritium inventory: ~ a few kg

Table I

| Facility | Location              | Max Inventory | Throughput | Status         | Function         |                      |
|----------|-----------------------|---------------|------------|----------------|------------------|----------------------|
| TSTA     | Los Alamos USA [7]    | 100g          | >1kg       | Decommissioned | Fuel cycle tests |                      |
| TFTR     | Princeton USA         | 5g            | ~100g      | Decommissioned | Tokamak          |                      |
| JET      | Culham UK             | 20g           | ~100g      | Operational    | Tokamak          |                      |
| TPL      | Tokai Japan [8]       | 60g           | _          | Operational    | Fuel cycle tests | Bell                 |
| TLK      | Karlsruhe Germany [9] | 40g           | 160g       | Operational    | Fuel cycle tests | EFDA-JET-CP(02)05/23 |
| ITER     |                       | 3kg           |            |                |                  |                      |

JET: 30g (tritium recycling plant), 20g (torus), 10g (cryo-pumps) ITER: 450g (VV or fuel cycle sub-systems), 330g (PFC), 120g (cryo-pumps)

# **Reactor Material Activation : Tungsten**

#### **Decay Heat and Activities**

Activity of Tungsten and FW/shield Activated Corrosion Products (ACPs)

ITER PDD 2001



| Tung    | on<br>micro-m)   |                     | AC      | CP deposits (ste | el)                                        |                                                              |
|---------|------------------|---------------------|---------|------------------|--------------------------------------------|--------------------------------------------------------------|
| isotope | half life<br>[y] | activity<br>[Bq/kg] | isotope | half life<br>[y] | deposit<br>activity<br>[Bq/kg-<br>deposit] | Ion and cruds in<br>solution<br>activity<br>[Bq/kg-ion/crud] |
| W 187   | 2.72E-03         | 5.24E+14            | Fe-55   | 2.73E+01         | 2.07E+12                                   | 9.61E+11                                                     |
| W 185   | 2.06E-01         | 3.71E+13            | Mn-54   | 8.55E-01         | 9.86E+10                                   | 3.49E+11                                                     |
| W 185m  | 3.17E-06         | 3.64E+13            | Mn-56   | 2.94E-04         | 1.35E+12                                   | 1.19E+13                                                     |
| W 181   | 3.31E-01         | 1.43E+13            | Co-58   | 1.94E-01         | 1.06E+11                                   | 3.92E+11                                                     |
| Re188   | 1.94E-03         | 6.01E+12            | Co-60   | 5.27E+01         | 1.41E+11                                   | 2.39E+11                                                     |
| Re186   | 1.03E-02         | 2.20E+12            | Cr-51   | 7.59E-02         | 1.14E+11                                   | 4.54E+08                                                     |
| Re188m  | 3.54E-05         | 5.79E+11            | Ni-57   | 4.11E-03         | 4.52E+10                                   | 8.85E+10                                                     |
| W 179   | 7.13E-05         | 2.56E+11            | Co-57   | 7.44E-01         | 2.64E+11                                   | 4.96E+11                                                     |
| Ta182   | 3.14E-01         | 1.54E+11            |         |                  |                                            |                                                              |
| W 179m  | 1.22E-05         | 1.02E+11            |         |                  |                                            |                                                              |
| Ta186   | 2.00E-05         | 6.34E+10            |         |                  |                                            |                                                              |
| Ta183   | 1.39E-02         | 6.18E+10            |         |                  |                                            |                                                              |
| Ta184   | 9.92E-04         | 4.34E+10            |         |                  |                                            |                                                              |
| Ta182m  | 3.04E-05         | 2.88E+10            |         |                  |                                            |                                                              |
| Ta179   | 1.61E+00         | 2.74E+10            |         |                  |                                            |                                                              |
| Re184   | 1.04E-01         | 1.99E+10            |         |                  |                                            |                                                              |
| Ta180   | 9.22E-04         | 1.15E+10            |         |                  |                                            |                                                              |
| Hf183   | 1.22E-04         | 9.64E+09            |         |                  |                                            |                                                              |

Radiological source terms are (1) tritium, (2) tokamak dust, (3) activated corrosion products (ACPs).

#### **Reactor Material Activation : Structural Materials**



#### **Reduced Activation Ferritic-Martensitic (RAFM) Steel Development**

'Reduced Activation Ferritic-Martensitic' steels are under development:
→ Ta replaces Nb, → V replaces Ti → W or V replaces Mo

→ Cr replaces Mn ... up to a point. → Avoid Ni, Cu, N

| Program | Steel             | С     | Si   | Mn   | Cr   | W   | V    | Ta   | N      | в     | Other     |
|---------|-------------------|-------|------|------|------|-----|------|------|--------|-------|-----------|
| Japan   | F82H              | 0.10  | 0.2  | 0.50 | 8.0  | 2.0 | 0.2  | 0.04 | < 0.01 | 0.003 |           |
| Japan   | JLF-1             | 0.10  | 0.08 | 0.45 | 9.0  | 2.0 | 0.20 | 0.07 | 0.05   |       |           |
|         | <b>OPTIFER</b> Ia | 0.10  | 0.06 | 0.50 | 9.30 | 1.0 | 0.25 | 0.07 | 0.015  | 0.006 |           |
| Europe  | OPTIFER II        | 0.125 | 0.04 | 0.50 | 9.40 |     | 0.25 |      | 0.015  | 0.006 | 1.1<br>Ge |
|         | EUROFER           | 0.11  | 0.05 | 0.50 | 8.5  | 1.0 | 0.25 | 0.08 | 0.03   | 0.005 |           |

RAFM steels will be 'cool' enough for simple recycling and re-use after ~ 50-100 years storage (after ~ 5 years service in the reactor first wall).

#### Advanced Reduced-Activation Alloy (ARAA) : KAERI

| Ti-RAFM : KIMM | Steels  | С    | Si   | Mn   | Cr   | W    | V    | Ta   | Ti   | N      |
|----------------|---------|------|------|------|------|------|------|------|------|--------|
|                | Ta-RAFM | 0.09 | 0.12 | 0.54 | 8.17 | 1.95 | 0.21 | 0.08 | -    | 0.0026 |
|                | Ti-RAFM | 0.08 | 0.12 | 0.45 | 9.09 | 1.07 | 0.21 | -    | 0.07 | 0.0019 |

5

#### **RAFM Steel Manufacturability: Effect on Waste**

#### **EUROFER Blanket Material**

- replace every 5 years;
- P<sub>fus</sub> = 3 GW;
- Neutron Wall Load = 2.3 MW.m<sup>-2</sup> for 5 years

For EUROFER to achieve Reference composition Nb impurity needs to be further decreased by two orders of magnitudes to 0.00001% (~0.1 ppm)

Hands-on recycling level



Ref [9]: P Batistoni et al.

### **Comparison of Long-lived Radioactive Wastes**

A comparison of total radiotoxicity of PWR, Fusion, and GEN-IV reactors. Radioactivity from coal-fired plant ashes are included too. All results are normalized to a 1000 MWe power electricity production.



Zucchettia et. al, FED(2018)

# **Radiation Shielding**

- Protect magnet coils superconductor copper stabilizer insulation
- Reduce activation
- Protect people
- Neutrons and gammas attenuation ~ 10<sup>-7</sup>

**Shielding Requirements** – ARIES CS Radiation Limits, 40 full-power years

| Fast neutron fluence to c                | coils < 10 <sup>19</sup> /cm <sup>2</sup> |
|------------------------------------------|-------------------------------------------|
| Nuclear heating in Nb <sub>3</sub> S     | $n \text{ coils} < 2 \text{ mW/cm}^3$     |
| Dose to coil insulator                   | < 10 <sup>11</sup> rad                    |
| Copper stabilizer displacements per atom | < 6x10 <sup>-3</sup> dpa                  |
|                                          | (El-Guebaly FST 2008)                     |

- WC is used for both neutrons and gammas
- ARIES CS: double-wall vacuum vessel
   (RAFM steel structure, borated steel filler, and water)

## Shutdown Dose Rate (SDDR) in ITER



C-lite

78,

64,

 $28_{\Lambda}$ 

24

C-lite

70,

52,

21

 $17_{\Delta}$ 

# **ITER Remote Handling**

#### Tokamak

PBS-23-1

**Blanket RH** 

![](_page_9_Picture_2.jpeg)

- Divertor RH (PBS 23-2)
- Transfer Cask and Port Plug (PBS 23-3)
- In-Vessel Viewing System (PBS 23-4)
- Neutral Beam System RH (PBS 23-5)
- Hot Cell RH (PBS 23-6)
- RH Test Facility (PBS 23-9)
- Multi-Purpose Deployer (DCR-130)

![](_page_9_Picture_10.jpeg)

Tesini, 2010

### **ITER Remote Handling**

![](_page_10_Figure_1.jpeg)

#### **ITER Remote Handling Processes**

![](_page_11_Picture_1.jpeg)

1a) Move TCS from lift to port plug

1b) Install or removal of Tokamak component

1c) Move back to lift

2) Lift up or down

 Move from lift to HCF port

# **ITER Remote Handling Classifications**

| Class 1          | Those components that require <b>scheduled remote</b><br><b>maintenance</b> or replacement several times during the<br>life of the machine.                                                                                                       |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Class 2          | Those components that do not require scheduled remote maintenance but are likely to require <b>unscheduled</b> and very infrequent remote <b>maintenance</b> .                                                                                    |
| Class 3          | Those components not expected to require remote maintenance during the life time of ITER, but <b>whose</b> failure would prevent ITER operation.                                                                                                  |
| Unclass<br>ified | Those components that do <b>not require remote</b><br><b>maintenance</b> either because:<br>a)they are in a low or zero contamination / activation<br>area and can be maintained hands-on. or<br>b)their failure would not prevent ITER operation |

From ITER\_D\_27ZRW8 - Draft of Project Requirements (2008 Edition)

For more detail classification procedure, see <u>ITER\_D\_2FMAJY - ITER Remote Maintenance Management System (IRMMS)</u>

## **ITER Remote Handling Equipment**

![](_page_13_Picture_1.jpeg)

#### **ITER Remote Handling Equipment**

![](_page_14_Figure_1.jpeg)

#### **ITER Divertor Remote Handling Equipment**

![](_page_15_Picture_1.jpeg)

### **ITER Divertor Remote Handling Equipment**

![](_page_16_Picture_1.jpeg)

![](_page_16_Picture_2.jpeg)

![](_page_16_Picture_3.jpeg)

# **ITER NB Remote Handling System**

![](_page_17_Picture_1.jpeg)

### **ITER In-Vessel Remote Handling Requirements**

|                                   | Requirement                                                                                            | Activity                                                        | Expected Frequency<br>of Operation      | RH<br>class |
|-----------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------|-------------|
| Mandatory                         | Dust accumulation<br>monitoring and removal                                                            | Dust sampling<br>Dust removal                                   | 16 months*<br>16 months*                | 1           |
|                                   | Tritium inventory<br>monitoring                                                                        | Tritium sampling<br>Tritium removal                             | 16 months*<br>Main system is<br>baking  | 1<br>2      |
|                                   | Vacuum vessel<br>inspection                                                                            | Periodic inspection<br>Periodic requalification                 | every 40 months<br>every 10 years       | 1           |
| Defined at a<br>certain<br>extent | Vacuum vessel leak<br>identification                                                                   | Leak localisation                                               | Expected few times<br>in ITER operation | 1           |
|                                   | In-Vessel diagnostics<br>maintenance                                                                   | Calibration, alignment,<br>inspection, replacement,<br>cleaning | 16 months                               | TBD         |
| Definition on going               | <ul> <li>VS and ELMs coils</li> <li>Maintenance</li> <li>NB Duct Liner Tile<br/>replacement</li> </ul> | Maintenance<br>Assistance                                       | TBD<br>TBD                              | TBD<br>TBD  |
|                                   | <ul> <li>Rescue operation of<br/>the other RH systems</li> </ul>                                       | Rescue operation                                                |                                         |             |

# **ITER Multi-Purpose Deployer (MPD) Operation Concept**

- Operation of the MPD will require a number of tools which must be made available ideally at the manipulator work site for operation time efficiency.
- For this reason a second MPD is deployed with the concept Task
   Module mounted upon it.
   Work space coverage

![](_page_19_Figure_3.jpeg)

### **DEMO Remote Handling**

![](_page_20_Figure_1.jpeg)

MMS toroidal transporter

- Much heavier components (blanket segments 70-90 tonnes)
- High radiation environment
- Much stricter containment control
- Higher reliability/availability lower turn-around time