What are Issues for realizing fusion power plant?

Why do we need fusion?

Requirements for fusion as a future energy source

Setting GOAL!

Where are we?

What are Issues for realizing fusion power plant?

What are Issues for realizing fusion power plant?

What are Issues for realizing fusion power plant?

- 1. Do we have enough plasma performance?
- 2. Can we sustain fusion reactor condition stably?
- 3. Can fusion power be handled by surrounding wall?
- 4. Can we supply enough fuel?
- 5. Can we operate reactor without severe environmental problems? Safety, blanket technology
- 6. Can we reactor with reduced cost?
- 7. Integrated DEMO design and system development? Modelling and simulation
- 8. Alternative concepts to resolve any remaining problems?
- 9. Investment for R&D and demonstration?
- 10. License, code and standards, Public acceptance

0. Setting goal: Term paper topics from fusion reactor technology 1 of last semester

- Physics Validation Tokamak
- K-DEMO-based fusion reactor
- EU DEMO2-based fusion reactor
- Small fusion power plant (reference : SMART of fission)
- Hybrid reactor
- Spacecraft fusion reactor
- ST (Spherical Torus) fusion neutron source
- Negative Triangularity Tokamak
- SPARC-based compact fusion reactor

Compact ST fusion power plant (fusion version of SMART)

0. Setting goal: Compact ST fusion power plant (fusion version of SMART)

- Power from SMART: 330 MW_{th}, 100MW_e
- Size of reactor from SMART: H=2m, D=1.83m \rightarrow R=1.2m, a=0.8m, κ =2.0

Parameter	Unit	Symbol	Equation	KSTAR	ITER	K-DEMO	Compact ST
					•	•	
Major Radius	m	R ₀		1.8	6.2	6.8	1.2
Minor Radius	m	а		0.5	2.0	2.1	0.8
Elongation		к		1.8	1.7	1.8	2.0
Plasma Current	MA	Ιp		2.0	15.0	12.0	5.0
Toroidal Magnetic Field	Т	BT		3.5	5.3	7.4	9.0
Normalized Beta	-	βN		5.0	1.8	4.0	7.0
Internal Inductance	-	I_i		1.0	1.0	1.0	0.8
Sfaety factor		q _{eng}		2.19	1.94	3.6	9.6
Average Ion Temperature	keV	Т		3.42	9.31	20.22	15.74
Energy Confinement Time	S	T_E		0.12	1.82	1.06	0.45
Average Ion Density	10 ²⁰ m ⁻³	n		2.55	0.95	1.04	2.49
Toroidal Beta	%	βτ	$\beta_N I_i I_p / aB_T$	5.71	2.55	3.09	3.89
Fusion Power	MW	Pf		0.318	513	3674	363
Loss Power	MW	Ploss	pV/τ _E	38	130	677	84
Aux. Heating Power	MW	P _H		28	73	120	10
Required current drive por	MW	P _{NCD}		15.3	112.5	28.8	7.5
Q			P _f /P _H	0.01	7	31	36
Troyon Beta Limit	%	β_{Troyon}	$\beta_N I_i I_p / aB_T$	5.71	2.55	3.09	3.89
H-mode scaling law	s	т _{Н98у}		0.12	1.82	0.66	0.18
Greenwald Density limit	10 ²⁰ m ⁻³	n _G	Ι _Ρ /πa ²	2.55	1.19	0.87	2.49
H factor		Н		1.0	1.0	1.6	2.5
Greenwald density factor		f _G		1.0	0.8	1.2	1.0
Bootstrap fraction		f _B		0.0	0.24	0.83	0.7
Fusion Triple Product	10 ²⁰ m ⁻³ -s-keV		ηΤτ _ε	1.0	16.2	22.3	17.6

Plasma performances vs. Machine operation limits

$$\beta_{N} \qquad \beta = \beta_{N} I_{p} / a B_{o} \qquad \langle p \rangle = \beta B_{o}^{2} / 2 \mu_{o} \qquad I_{p} \\ q = 2\pi a^{2} B_{o} / R \mu_{o} I_{p} \\ f_{b} \qquad f_{b} \sim \varepsilon^{\frac{1}{2}} \beta_{p} \\ I_{p}^{*}(1-f_{b}) < I_{CD} = \gamma_{CD} * P_{CD} / n_{e,20} R \\ H \text{ factor } \rightarrow \tau_{E} \equiv \langle p \rangle / P_{loss} = \tau_{Eth}^{ELMy} H \\ n_{d} \qquad n_{d} \qquad n = n_{G} I_{P} / \pi a^{2}$$

 $Q = P_f / P_H$

But, optimal temperature ~15keV

 $P_{f} = P_{n} + P_{\alpha} = n_{D}n_{T} < \sigma v > E_{f}$ = $N_{D}N_{T}(B^{4} / 16\mu_{o}^{2}) \beta^{2} E_{f} < \sigma v > /k^{2}T^{2}$

1. Do we have enough plasma performance?

- Sufficient fusion power for net electricity generation as required: P_f > 330 MW_{th}, P_{net} > 100MW_e
- Sufficient heating power for required current drive power: P_H > P_{CD} (f_b)
- Sufficient alpha heating power compared to power loss: $P_{\alpha} + P_{H} > P_{loss}$ (H factor)
- High field, high current, low density limit, low bootstrap fraction and low β_N gives low net electricity
 I_p=10MA, B_o=9.0T, P_f=363MW, P_H=50MW, β_N=3.5, H=2.2, n_G=0.5, f_b=0.5, η_e=0.4, P_{net}=71MW
- High current/low field, high β_N, low density limit and high bootstrap fraction meets most requirements I_p=10MA, B_o=4.5T, P_f=363MW, P_H=25MW, β_N=7, H=2.5, n_G=0.5, f_b=0.7, η_e=0.4, P_{net}=95MW
- High field/low current, high β_N, high H factor and high bootstrap fraction meets most requirements
 I_p=5MA, B_o=9.0T, P_f=363MW, P_H=10MW, β_N=7, H=2.5, n_G=1.0, f_b=0.7, η_e=0.4, P_{net}=113MW

Plasma stability with high beta limits : high β_N instead of high I_p Steady-state with high f_b : high q_a with low I_p (high density limit) Plasma confinement with high τ_E : high H factor

1. Do we have enough plasma performance?

- Plasma stability with high beta limits : high β_N instead of high I_p

1. Do we have enough plasma performance?

- Plasma stability with beta limits : high β_N
- Steady-state with high f_b and low fusion power : high q_{95} , low $P_{H\&CD} \rightarrow$ high H

G. SAIBENE et al., Plasma Phys. Control. Fusion 44, 1769(2002)

Difficulty in H factor, but uncertainties in scaling law ?

- 1. Do we have enough plasma performance?
 - Plasma stability with beta limits : high β_N
 - Steady-state with high f_b and low fusion power : high q_{95} , low $P_{H\&CD} \rightarrow$ high H
 - Plasma confinement with high τ_{E} : high H factor with selected scaling law

Uncertainties in scaling law ?

$$\tau_{E}^{IPB(y,2)} = 0.1445H_{98}(y,2)M^{0.19}I_{p}^{0.93}R^{1.97}B_{T}^{0.15}\varepsilon^{0.58}\kappa_{a}^{0.78}\overline{n_{e20}}^{0.41}/P_{loss}^{0.69}$$

$$P_{loss} = P_{\alpha} + P_{ohmic} + P_{aux} - P_{brem} - P_{cycl} - P_{line}/3$$

Power balance needs to be estimated carefully. Confirmed only with simulation.

1. Do we have enough plasma performance?

- Plasma stability with beta limits : high β_{N}
- Steady-state at low fusion power and high f_b : high q_{95}
- Plasma confinement with high τ_{E} : high H factor

Homework # 1

- 1. Plasma instabilities related to the plasma beta limit
- 2. Improved plasma confinement regimes
- 3. Tokamak plasma operation scenarios