Fusion Plasma Theory Il. 2019
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where c¢; is a coefficient on the order of one which depends on many as-
sumptions.

We'll assume n and 7T, profiles will behave in the same way.

When magnetic island size is large enough, very fast || conduction along B
flattens T, profile.
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i.e. a deficiency of Bootstrap current in the island region.
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As we did before for a classical tearing mode, we’ll integrate this equation
over the width “w” of a magnetic island in radial direction.
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Divide each side by 2¢» and recall w o 1!/2.
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and defining
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we can obtain a modified Rutherford equation for NTM.
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This equation appears to be singular (i.e., the 2nd term on the RHS 7 oo
as w — 0 ) but by multiplying both sides with w, we obtain
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Note that o > 0 for § > 0, p’ <0 and 1/L, > 0.
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Now, we can discuss nonhnear evolutlon of NTM magnetic island.
i) If “w” is very small (thin island),
the 2nd term dominates on the RHS.
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For an initial size of island w(0) = w(t)|=o

Note that this possible even for A’(0) < 0! (i.e., when the classical
tearing mode is stable)

As w increases, the 1st term on the RHS becomes non-negligible and
we should consider its effect.
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i) If A’(0) > 0

the Neoclassical term oc p’ simply adds to the drive due to current
gradient characterized by A’.

= Island will eventually saturate(w — w(t — o0) < oo, due to
A'(w) < 0) as w gets larger.
i) If A'(0) < 0,

the island will saturate when

This model predicts every rational surface in tokamak will be unstable
to NTM! Fortunately, only a few relatively low (low or moderate) mode
number modes have been typically observed from tokamak experiments.



2. Examples of Basic Microinstabilities

Consider a uniform magnetic field B = BpZ, nonuniform density profile ny =
no(z), periodicity in y and z.(topologically a flat torus!) Let’s consider uniform
temperatures for simplicity.

In this simple geometry, any perturbed quantities can be Fourier-decomposed in
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y and z directions. E.g.,
&z, y, 2 Zéqbkw z) exp [i(kyy + k.2 — wt)]

on(z,y, z Z(Snkw (x) exp [i(kyy + k.2 — wt)]

We'll pursue a local theory at first (at one point in z).

2.1. Electron Drift Wave

Electron drift wave has been seriously considered in theoretical community since
early days. It can be driven unstable only in the presence of density gradient.

Let’s search for an “electrostatic” (i.e. B=0= V xE =0 = E = —V¢) wave
with a phase velocity satisfying Uthi <K wW/k; K vthe. Here vgh e = /Te/me, Uthi =

VTi/M;,k, = k=B -k/|B.



A.Electron Response

Since electrons move fast (can cover the system size during one wave period!
kHvth,e > w), we can consider them in a thermal equilibrium in the presence of
electrostatic fluctuation d¢.

Maxwell-Boltzmann Statistics
= fe(E) o exp (—E/T.) = exp [— (3mev? — |e] 8¢) /Te]
= ne = [ d3vfe(E) = neoexp (|e| 0¢/T,) : Boltzmann relation.
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The perturbed part is given by dn, = n. —ney = neo [1 +— T, ( Te )
eldgp
] -l
@e /nep = |e| 8¢/ Te—l : Electrons obey Boltzmann response.

This Boltzmann response is also called the adiabatic response.
“Adiabatic” here refers to a slow time variation of a wave.

It is also instructive to recover this from a fluid description.
The fluid momentum equation (of motion) for electrons is given by

d il
MeNe—Ue = —N¢ |€] <E+ e X B) — Vpe (1)

dt

Linearize (assuming uey = 0) to obtain,

] il
5190 = —nole| (6B + -u. x B) - Vp. (2)
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Take b- and ignore electron inertia; me — 0 (recall vy, o = \/T/me is very fast)
= le|ngV )06 — T.Vdn, =0
0¢/Te (3)

(Here, Vi=b-V= 0/0z, we assumed isothermal plasma with 67, = 0 = dpe =
T.0n.)

dne/nep = |e

B. Ion Response

Tons satisfy w/kj| > vip i, we further assume “cold ions”,

i.e. ki p; <1 (ignore FLR effect), but T; < T, = .

Here Pi = Uth.’i/QCiw Qs = ‘e| BO/A[iC’ Ps = Cs/Qci = Te/Tipia Cy = vV Te/Mi-
In tokamak, Ohmically heated or ECRH heated plasma satisfy T; < T.. But here
just for algebraic simplicity.

In this situation, most of ions move slowly enough. From the wave’s point of view,
they more or less move together like a fluid.



Their equation of motion is
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Linearize and drop Vp; (cold ions!) (with u;p = 0)

0 1
= ]Mmiaéui =nqtel ((5E - ESui X B) (5)
Along B =
0
Mmoaéui” =N |€[ 5E” = -1y |e[ V”5¢ (6)
Across B =

We can solve Equation (5) via iteration knowing (or assuming) w/Q. < 1.
(We are dealing with “low frequency” microinstabilities.)

(W/Qei ~ w/lﬂfc x |M;/e| < 1)




1st order : RHS=0.
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2nd order :
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(6), (7), (9) with a continuity equation, %ni + V- (nsu;) = 0, we can derive a

dispersion relation. Linearize to get
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aénl + 51.1E : V?’Lo + noV & 5up01 + nOV”SuZ” =0 (11)
Here you can check V - Jug and other contributions are even smaller or vanish.
Fourier decompose, i.e. ~ exp [i(kyy + k.2 — wt)] =
d ; : < . No
4 = —Ww, V) =ik, V =ik, ,but Vn, = —2—

Bt n
Here Lyk, > 1, ie. (system size) > (L wavelength), and therefore dup - Vng
term is dropped in the linearized continuity equation.
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Here the 1st term on RHS is from dug - Vng, and the 2nd term and the 3rd term
are from VHéui” and V - dup,, respectively.
The Poisson equation in a normalized form is

o2 le|dd 3 on; — dne
T, o
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For long enough wavelength A > Ap.. Therefore, it can be approximated by the
quasi-neutrality equation : dn. = dn;
Finally, we obtain the linear dispersion relation for the electron drift wave.
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diamagnetic drlft velocity.

(cf. Another possible notation vg4. could be confused with VB or curvature drift.)
The figure below is an illustration of drift wave propagation. We consider a seed
perturbation in the presence of equilibrium density gradient.

Here wye = ky—cs = kyvse is electron diamagnetic frequency, where v, is electron
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2.2. Electron Drift Wave in Uniform Magnetic Field
Linear dispersion relation:
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Here, k_zL w8 k;, B = Byz and the diamagnetic drift frequency is wie =
(kyps/Ln) cs = kyvse. We assumed
56 (2,y,2) = D 6duw (x) expi (kyy + k=2 — wt) (16)
k,w

and used the WKB approximation,
xT
bt () = 86 (D) |i [ ke () o] (7)

which is valid for k,L,, >> 1. Here, the eikonal actor exp (i [* k, (x) dx) captures
the fast variation in z and 8¢ (z) and k, (z) are slowly varying in x. To the
lowest order in the 1/k, L, expansion, there is only a local value in %, in the linear
dispersion relation.

Let’s calculate the particle flux in the = direction carried by a drift wave.

T = (0n:00,) (18)

Here, (...) is an ensemble average, or a long time average. Practically, it’s replaced
by an average over ignorable coordinate(s) (i.e., direction of symmetry).
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In this simple slab geometry, both y and z are ignorable coordinates. (In tokamak
geometry, only the toroidal angle “(” is an ignorable coordinate.) The E x B drift
is

LA 8¢ (19)

and the density fluctuation is

Therefore,
. cle| 0 c le| ';
Ovg) = — —00) = ———— —0 =0, 21
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because the last expression is a perfect derivative, and
Ipyt = Re (dndvg) = 0. (22)
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