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Today’s objectives

 Review the shear stress for laminar and turbulent flows
 Apply Prandtl’s theory to the smooth pipe flows
 Figure out the wall law for flow in smooth pipe
 Similarly to the smooth pipe case, turbulent flow in rough 

pipe will be understood.
 Classifying the pipes whether they are smooth or rough
 Evaluating pipe friction factors in the given condition
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 Shear stress between adjacent layers in a simple parallel flow is      
determined by the viscosity and the velocity gradient

 If laminar flow is disturbed by an obstacle or roughness, then           
disturbances must be damped by the molecular viscosity (stable)

 However, in turbulent flow, inertia overcomes the viscous force and 
disturbance grows and becomes random motion.

1. Shear stress
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 turbulent shear stress (Reynolds stress)

 Boussinesq modeled the Reynolds stress with gradient transport        
theorem (simply mimicking the molecular viscosity),and Prandtl
suggested the mixing length model

 Finally, total shear stress is the sum of the viscous shear stress and   
the turbulent shear stress
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 Shear stress in turbulent pipe flow
- t is maximum at the pipe wall due to viscous shear stress in the viscous sublayer.

- t is decreasing linearly with y from the wall.
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 This figure shows linear variation of total shear stress in a turbulent 
pipe flow.

 For smooth pipes, discussion (Section 7.3) strongly suggests the 
existence of a viscous sublayer near the pipe walls.

 Employing the Prandtl relationship by assuming the viscous stress is 
negligible over most of the flow

(9.12)

where y is measured from the pipe wall

2. Prandtl’s mixing length theory
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3. Velocity profile of turbulent flow in pipe
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 From Nikuradse’s measurement in experiments: smooth or rough   
but uniform sand grain, all velocity profiles could be represented by

(9.13)

Differentiate Eq. 9.13 wrt y, then                      , and from (9.12)

Near wall,                    then in a pipe flow, length scale follows;
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3.1 Nikuradse’s empirical equation



Seoul National University

9

Eq. (9.12) now becomes

Integrating Eq. 9.15 produces

(9.13)
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3.2 Theoretical equation from Prandtl’s mixing length model
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[Remark]
 Near wall             , 

Then (9.12) can be written
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 For smooth pipe, at very near wall (viscous sublayer), velocity profile 
is linear and to match with Nikuradse’s experiments, then

(9.17)

 In terms of common logarithms,

 This is the general equation of the 
velocity profile for turbulent flow 
in smooth pipes.

4. Wall law
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 For smooth pipe, a viscous sublayer must exist near the smooth 
wall, and the velocity profile is given by

(9.7)

 The nominal extent of the viscous sublayer, y’,  is obtained by 
finding the intersection of the viscous profile of Eq. 9.7 with the 
turbulent profile given by Eq. 9.17. The sublayer thickness 𝛿𝛿𝜈𝜈 is 
given as

(9.18)
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Velocity distribution near a smooth wall

13

*

*

v
v

= v y
ν

*

*

v =5.75log +5.5
ν

v y
v



Seoul National University

 Mean velocity, V

(9.19)

 Maximum velocity (velocity at the center)

 Subtract the mean from the maximum, then adjust to the experiment

(9.20)

5. Mean velocity
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 Friction factor f can be obtained by introducing Eq. 9.4 into Eq. 9.19, 
and adjusting the result based on the experiments

(9.21)

 Introducing Eq. 9.4 into Eq. 9.18 yields the expression for the 
laminar sublayer thickness

(9.22)

 It means that laminar sublayer is decreasing 
with increase of Reynolds number 
→ rough wall

6. Friction factor in turbulent flow of smooth pipe
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 Rewrite Eq. (9.22)

 Substituting this into Eq. 9.21 yields the equation below

(9.23)

 For turbulent flow over smooth walls, the friction factor is a        
function of the ratio of the sublayer thickness to the pipe diameter.
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Example problem #1 (pp. 334-335)

 Water at 20°C flows in a 75 mm diameter smooth pipeline.  According 
to a wall shear meter, τ0 = 3.68 N/m2. Calculate the thickness of the     
viscous sublayer, the friction factor, the mean velocity and flowrate,    
the centerline velocity, the shear stress and velocity 20 mm from the 
pipe centerline, and the head lost in 1,000 m of this pipeline.

– Thickness of the viscous sublayer
– Friction factor
– Mean velocity
– Flowrate
– Centerline velocity
– Shear stress
– Head loss

18
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Example problem 1

– Thickness of the viscous sublayer

– Friction factor

– Mean velocity

– Flowrate

– Centerline velocity

– Shear stress

– Head loss
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 Before the generalization by Prandtl, von Karman, and Nikuradse, 
Blasius (1913) developed simpler equations.

 Blasius work has limited scope and empiricism.
• Valid only for 3,000<Re<100,000
• Often called seventh-root law because the turbulent velocity profile is 

given by

7. Blasius’ equation
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 For 3,000<Re<100,000, Blasius showed that the friction factor could 
be closely approximated by the equation

(9.24)

 Derivation of Blasius velocity profile and shear stress.

 Blasius then assumed the velocity profile as a power relationship
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Therefore,

But, wall shear stress could not be affected by pipe radius (R), 
so m = 1/7.

22
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Finally,

→ seventh-root law

At this moment, 
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 For the conditions of previous examples, calculate the friction factor, 
wall shear stress, centerline velocity and the velocity 25 mm from     
the pipe centerline using the seventh root law.

Check whether we can use Blasius eq. The Reynolds number is

Then

The centerline velocity.   

Example problem #2 (pp. 337-338)
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 The shear stress

Example

25
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 Pipe friction in rough pipe will be governed primarily by the size and 
patterns  of the roughness

 Velocity profile follows logarithm when the flow is turbulent.
 When roughness is high, the viscous layer will be canceled and         

viscosity may not be the important parameter.
 Experiment by Nikuradse proved that the viscosity can be replaced 

by the roughness in the rough wall condition.

4.4 Turbulent flow in rough pipes
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e = sand grain diameter

1. Velocity profile
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The mean velocity is

Since 

With adjustment by experimental data by Nikuradse, 

Rough pipe’s friction factor
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Q (flow rate) for pipe flow can be determined as
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 The mean velocity in a 300 mm pipeline is 3m/s.  The relative 
roughness of the pipe is 0.002, and the kinematic viscosity of the 
water is  9 x 10-7 m2/s. Determine the friction factor, the centerline 
velocity, the velocity 50 mm from the pipe wall, and the head lost in 
300 m of this pipe under the assumption that the pipe is rough.

– Friction factor
– Centerline velocity
– Velocity at y=50 mm from the wall
– Head loss

IP 9.6; pp. 339-340
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– Friction factor

– Centerline velocity

– The velocity at 50 mm from the wall

– Head loss

Example
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 For a turbulent flow in a smooth pipe, the characteristic length is the 
viscous sublayer thickness δv, and for a rough pipe it is the 
roughness height e.

 In case of transition,           must be a significant parameter.
 In laminar flow, viscous sublayer thickness is the radius of pipe 

since viscosity governs the whole flow in pipe. 

 In turbulent flow,

4.5 Classification of smoothness and roughness

Eq. 9.22
31
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 Now we can plot the friction factor versus
 For fully rough flow, 

(9.31)

Thus, it is convenient to plot                          versus 

 For smooth flow,

(9.33)

2.1 Classification by friction factor
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 Classifications

For smooth flow: Re 10; 0.3

For transition flow: 10< Re 200

For rough flow: 200 Re ; 6
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 Colebrook Equation
• Nikuradse experimental results cannot be applied directly to 

commercial pipes since the roughness patterns are entirely different, 
much more variable than the artificial roughness used by Nikuradse.

• Colebrook suggested a single equation for a highly turbulent flow 
which can be applied to both smooth and rough commercial pipes.

• Distinctions between smooth, transition, and rough flow are not 
present.

Commercial pipe
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2.2 Classification based on velocity profile
 In all pipes, use Eq. 9.13 by Nikuradse

 In rough pipes, begin with Eq. 9.29
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This means that Eq. 9.13 can be used for both smooth and rough pipes. 36



Seoul National University

Classification based on velocity profile

 Now let’s modify the equation 
For both smooth and rough, Eq. 9.13 For smooth flow, Eq. 9.17

→ Thus, in rough flow, A=8.5 from experiment.
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Classification based on velocity profile
 Plot A versus        (Roughness Reynolds Number) for Nikuradse’s data*v e
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 Check Example #1 whether or not the flow is truly rough as 
assumed.

 The mean velocity in a 300 mm pipeline is 3m/s.  The relative 
roughness of the pipe is 0.002 and the kinematic viscosity of the 
water is  9 x 10-7 m2/s. Determine the friction factor, the centerline 
velocity, the velocity 50 mm from the pipe wall, and the head lost in 
300 m of this pipe under the assumption that the pipe is rough.

IP 9.7; p. 344
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Velocity profile equations

Laminar flow
Turbulent flow

Smooth pipe Rough pipe

Whole pipe
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𝑅𝑅 𝑚𝑚 : 0.01
𝜐𝜐∗ 𝑚𝑚/𝑠𝑠 : 0.0057
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Friction factor equations

Laminar flow
Turbulent flow

Smooth pipe Rough pipe
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