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What is magnetic mirror? 
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Z pinch θ pinch screw pinch 

Magnetic mirror 

Open Magnetic Confinement 

http://phys.strath.ac.uk/information/history/photos.php 
http://www.frascati.enea.it/ProtoSphera/ProtoSphera%202001/6.%20Electrode%20experiment.htm 
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- Suffering from end losses 

Magnetic Mirror 
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- To reduce end-leakage by establishing an increasing magnetic field  

  at the two ends 

- Many of charged particles are trapped due to the imposed  

  constraints on particle motion with regards to conservation of  

  energy and the magnetic moment. 

- First proposed by Enrico Fermi as a mechanism for the acceleration 

  of cosmic rays 

Gamma 10 and Hanbit 

Magnetic Mirror 
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Magnetic Mirror 

What is the motion of particles? 
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• Single particle picture  
- As the ion approaches the ends, it is increasingly subjected to  

  drifts due to the inhomogeneity of the mirror field.  

- Drifts occur in azimuthal directions and the particles are still  

  bound to their magnetic surfaces. 
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A. A. Harms et al, “Principles of Fusion Energy”, World Scientific (2000) 
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• Conservation of kinetic energy and magnetic moment 
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• Invariant of motion 
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Enrico Fermi (1901-1954) 
 

Nobel Laureate in physics in 1938 
Cf. Marshall Rosenbluth (Doctoral student) 

CP-1 (Chicago Pile-1, the world's first human-made nuclear reactor) and 
Drawings from the Fermi–Szilárd "neutronic reactor" patent 

Magnetic Mirror 

http://en.wikipedia.org/wiki/File:Enrico_Fermi_1943-49.jpg
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Magnetic Mirror 
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Magnetic Mirror 
.

sin
2

1

2

1

.
2

1

2

1

2

1

222

2
||

22
0

const
B

mv

B

mv

constmvmvmvE

===

=+==

⊥
⊥

θ
μ



13 

• Fermi as a genuine scientist 

Magnetic Mirror 
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• Condition for trapping of particles 
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• Condition for trapping of particles 

Magnetic Mirror 
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• Mirror ratio 
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A. A. Harms et al, “Principles of Fusion Energy”, World Scientific (2000) 
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Stability in mirror? 
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Magnetic Mirror 

• Instabilities  
- Flute instability: convex curvature of the magnetic field 

http://www.threes.com/index.php?view=article&id=20:greek-columns&option=com_content&Itemid=39 
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- Particle picture: 

  The curvature drift leading  

  to azimuthal polarisation to  

  create the E-field resulting  

  in the ExB drift displacing  

  the plasma particles  

  radially outward 
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Magnetic Mirror 

• Instabilities  
- Flute instability: convex curvature of the magnetic field 

E 
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minimum-B field configuration: 
field lines are (almost) 
everywhere concave into the 
plasma 

Magnetic well 

Magnetic Mirror 

• Instabilities  
- Flute instability: convex curvature of the magnetic field 



21 

x
 

x
 

http://blog.naver.com/PostView.nhn?blogId=ray0620&logNo=150112423635&parentCategoryNo=1&viewDate=&currentPage=1&listtype=0  
http://en.wikipedia.org/wiki/File:St_Louis_Gateway_Arch.jpg 

Magnetic Mirror 

• Instabilities  
- Flute instability: convex curvature of the magnetic field 

F. F. Chen, “An Indispensable Truth”, Springer (2011) 

http://upload.wikimedia.org/wikipedia/commons/b/b9/St_Louis_Gateway_Arch.jpg
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http://blog.naver.com/PostView.nhn?blogId=ray0620&logNo=150112423635&parentCategoryNo=1&viewDate=&currentPage=1&listtype=0  
http://en.wikipedia.org/wiki/File:St_Louis_Gateway_Arch.jpg 

Magnetic Mirror 

• Instabilities  
- Flute instability: convex curvature of the magnetic field 

F. F. Chen, “An Indispensable Truth”, Springer (2011) 
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23 

Magnetic field profiles  
in a Ioffe-Pritchard trap 

Yin-Yang coil 

Ioffe bars 

Magnetic Mirror 

• Instabilities  
- Flute instability: convex curvature of the magnetic field 

A. A. Harms et al, “Principles of Fusion Energy”, World Scientific (2000) 



24 http://www.wangnmr.com/Copper_magnet_catolog.htm 

Baseball coil 

Magnetic Mirror 

• Instabilities  
- Flute instability: convex curvature of the magnetic field 
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Gamma 10 Tandem mirror 
(Univ. of Tsukuba, Japan) 

Flux surfaces 

Plug/Barrier 
(potential 
plugging) 

ECRH 

Baseball coils 
(MHD stabilising) 

ICRF 

Magnetic Mirror 

• Instabilities  
- Flute instability: convex curvature of the magnetic field 
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 v|| 

loss cone 

loss cone 

Magnetic Mirror 

• Instabilities  
- Velocity-space instability: driven by the  

  non-Maxwellian velocity distribution due to  

  the preferred loss of particles with large  

  v||/v⊥. 
- Enhancing the velocity-space diffusion into  

  the loss cone 

- Observed that such it is less harmful to  

  plasma confinement when the mirror  

  device is short in dimension 
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Magnetic Mirror 
• Classical Mirror Confinement  
- If collisions are neglected, particles are trapped in a mirror when they do not appear 

  in the loss cone. 

- Collisions can bring them randomly from the confinement region into the loss cone. 

- Due to their relatively small mass, electrons diffuse more rapidly. 

→ a positive electrostatic potential built up in the confined plasma tending to retain 

   the remaining electrons in the magnetic bottle 

- Overall plasma confinement time is governed by the ion escape time. 
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Magnetic Mirror 
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• Classical Mirror Confinement  
- If collisions are neglected, particles are trapped in a mirror when they do not appear 

  in the loss cone. 

- Collisions can bring them randomly from the confinement region into the loss cone. 

- Due to their relatively small mass, electrons diffuse more rapidly. 

→ a positive electrostatic potential built up in the confined plasma tending to retain 

   the remaining electrons in the magnetic bottle 

- Overall plasma confinement time is governed by the ion escape time. 
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- Mirror confinement time does not depend on the actual magnitude  

  of B or the plasma size but on the size of the loss cone. 

- Higher density enhances the scattering into the loss cone. 

Magnetic Mirror 
• Classical Mirror Confinement  
- If collisions are neglected, particles are trapped in a mirror when they do not appear 

  in the loss cone. 

- Collisions can bring them randomly from the confinement region into the loss cone. 

- Due to their relatively small mass, electrons diffuse more rapidly. 

→ a positive electrostatic potential built up in the confined plasma tending to retain 

   the remaining electrons in the magnetic bottle 

- Overall plasma confinement time is governed by the ion escape time. 
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