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Tokamak stability




Tokamak Stability

- Considering plasma states which are not in perfect
thermodynamic equilibrium (no exact Maxwellian distribution,
e.g. non-uniform density), even though they represent
equilibrium states in the sense that the force balance is equal
to O and a stationary solution exists, means their entropy is not
at the maximum possible and hence free energy appears
available which can excite perturbations to grow:
unstable equilibrium state

- The gradients of plasma current magnitude and pressure are the
destabilising forces in connection with the bad magnetic field
curvature: The ratio of these two free energies turns out to be 3,




Stability

- Definition of Stability
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stable linearly unstable metastable  non-linearly unstable
- Assuming all quantities of interest linearised about their equilibrium values.
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Imw > 0 (w; > 0): exponential instability

Imw =< 0 (w; = 0): exponential stability




Tokamak Stability

- The Energy Principle
- Representing the most efficient and often the most intuitive method of
determining plasma stability.

- If the minimum value of potential energy is positive
for all displacements, the system is stable.

OW >0 stable - It it is negative for any displacement,

the system is unstable.

ow
o’ =——2>0 stable
K

oW =W, + W, + W,

[ 2

1 ~ ‘Q‘ £ = = 2 .
W, = [, dF| ==& - (Tx D+ plV & +(&, - VpIV-&]

Hy

oW :%J.Sdgﬁ'§¢ ﬁ‘[[V(P+BZ/2ﬂo)]]

‘2
é 2
SW, =%de?4

Hy 2
—




Tokamak Stability

« The Intuitive Form of dW, destabilising
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v
Energy required to bend magnetic field lines: dominant potential energy

contribution to the shear Alfvén wave
\[, I
Energy necessary to compress the magnetic field: major potential energy
contribution to the compressional Alfvén wave

Energy required to compress the plasma: main source of potential energy
for the sound wave
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Tokamak Stability

- Instabilities
- Two sources of free energy available:

plasma current

pressure gradient of a plasma
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pressure driven instabilities
(Rayleigh-Taylor or
interchange instability)
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Tokamak Stability

 Ideal MHD instabilities
current driven (kink) instabilities

internal modes Flux conservation
external modes Topology unchanged
pressure driven instabilities

interchange modes

ballooning modes
current+pressure driven: Edge Localised Modes (ELMs)
vertical instability

Resistive MHD instabilities Reconnection of field lines
current driven instabilities Topology changed

tearing modes

neoclassical tearing modes (NTMs)
nonlinear modes

sawtooth

disruption

 Microinstabilities - Turbulence




Ideal MHD instabilities in a Tokamak




Ideal MHD Instabilities

- The most Virulent Instabilities

- fast growth (microseconds)
- the possible extension over the entire plasma




Ideal MHD Instabilities

« Kink modes

- Causing a contortion of the helical plasma column
- Driven by the radial gradient of the toroidal current i Gos
- External kind modes: - q_pro s 1
 Baseline scenario 5

Fastest and most dangerous
Arising mainly when g, < 2

Advanced scenario

L Hybrid scenario 4
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http://www.maysville-online.com/news/local/tollesboro-home-destroyed-in-fire/article_a5e0eb4e-235b-5c7d-afee-74bf98c4e738.htm/
htto://www.bbc.co.uk/bitesize/hiaher/phvsics/radiation/waves/revision/1/




Ideal MHD Instabilities

« Kink modes

Plasma

- Stabilising effect by the conducting wall i,/

and strong toroidal magnetic field

stronger B

o stabilising
_ aB¢ _ aB¢ o B¢ Determining plasma current limit
L RB, Ryul,/2ma I set by kink instabilities — safety factor
p
™ destabilising
> Kruskal-Shafranov criterion:
4q stability condition for external kink mode for the worst case

Imposing an important constraint on tokamak operation:
toroidal current upper limit: Kruskal-Shafranov current (I < I.c)
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Ideal MHD Instabilities

 Interchange modes

- A toroidally confined plasma sees ‘bad’ convex curvature of the
helical magnetic field lines on the outboard side of the torus.
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F. F. Chen, “"An Indispensable Truth”, Springer (2011)

http://blog.naver.com/PostView.nhn?blogld=ray0620&logNo=150112423635&parentCategoryNo=1&viewDate=&currentPage=1&listtype=0
http://en.wikipedia.orag/wiki/File:St Louis Gateway Arch.ipg



http://upload.wikimedia.org/wikipedia/commons/b/b9/St_Louis_Gateway_Arch.jpg

Ideal MHD Instabilities

 Interchange modes

- A toroidally confined plasma sees ‘bad’ convex curvature of the
helical magnetic field lines on the outboard side of the torus.
- The average curvature of B-field lines over a full poloidal rotation
is ‘good’ for windings with a rotational transform 1 < 2n, i.e., g = 1.
- Interchange perturbations do not grow in normal tokamaks if g = 1.

PURELY TORUDAL B TWISTING E

S-O

Stable

| eraviny




Ideal MHD Instabilities

- Ballooning modes

- locally grow in the outboard bad curvature region: ballooning modes

- A high local pressure gradient is responsible for driving the
ballooning instability.

- Can be suppressed almost everywhere in the plasma by establishing
appropriate pressure profiles and appropriate magnetic field line
windings.
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.P. Freidberg, “Ideal Magneto-Hydro-Dynamics”, lecture note
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- Edge Localised Modes (ELMs)

- current driven (peeling mode) and pressure driven (ballooning

mode) combined instability .
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Ideal MHD Instabilities

- Edge Localised Modes (ELMs)

- current driven (peeling mode) and pressure driven (ballooning
mode) combined instability
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- Edge Localised Modes (ELMs)

A. Critical Vp in H-mode barrier region reached
— short unstable phase (ELM event)

B. Energy and particle loss reduces gradients.

C. Gradients build up during reheat/refuelling
phase.
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Ideal MHD Instabilities
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Ideal MHD Instabilities

- Edge Localised Modes (ELMs)

A. Critical Vp in H-mode barrier region reached
— short unstable phase (ELM event)

B. Energy and particle loss reduces gradients.

C. Gradients build up during reheat/refuelling
phase.
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- Edge Localised Modes (ELMs)
- Non-linear MHD simulations with JOREK

t = 2650 7,1 t = 2700 7, t = 2890 7,

Evolution of ballooning mode v
Huysmans, Czarny, NF 47 659 (2007)



Ideal MHD Instabilities

- Edge Localised Modes (ELMs)
- Non-linear MHD simulations with JOREK

G. Huysmans IRFM, CEA
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- Edge Localised Modes (ELMs)

- Standard ELM dynamics in the KSTAR visualized by ECEI
(1) Initial Growth

(2) Saturation
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G.S. Yun et al., PRL (2011)



- Edge Localised Modes (ELMs)

- Standard ELM dynamics in the KSTAR visualized by ECEI
(3) ELM crash
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G.S. Yun et al., PRL (2011)
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- Edge Localised Modes (ELMs)

- Full suppression by 3D
magnetic perturbation
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Courtesy of Y. M. Jeon (NFRI)
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- Vertical Instability

- Macroscopic vertical motion of the plasma towards the wall

MAST (0

MEGA-AMPERE SPHERT CAL TOKAMAK

FRAME HO
10621

86, -olo-

Vertical Haorizontal

Vertical \ /

Which is good for stability?

J.P. Freidberg, “"Ideal Magneto-Hydro-Dynamics”, lecture note



Ideal MHD Instabilities

* Vertical Instability
]

SHELL (VAC. CHAMBER)
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J.P. Freidberg, “Ideal Magneto-Hydro-Dynamics”, lecture note



Ideal MHD Instabilities

* Vertical Instability
]

SHELL (VAC. CHAMBER)
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J.P. Freidberg, “Ideal Magneto-Hydro-Dynamics”, lecture note



Ideal MHD Instabilities

* Vertical Instability

- For a circular cross sections a moderate shaping of the vertical field
should provide stability.

- For noncircular tokamaks, vertical instabilities produce important @ a/
limitations on the maximum achievable elongations. = 3

- Even moderate elongations require a conducting wall or a feedback ﬁg
system for vertical stability.
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J.P. Freidberg, “"Ideal Magneto-Hydro-Dynamics”, lecture note



