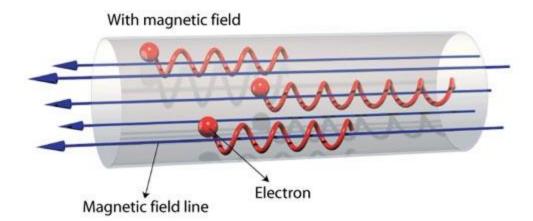

Introduction to Nuclear Fusion


Prof. Dr. Yong-Su Na

Plasma wall interaction (PWI)

Plasma Confinement

Without magnetic field

 Minimise contact to material walls by magnetic field

З

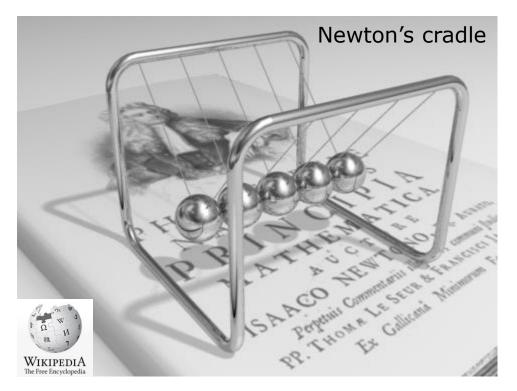
Fluxes to the Surface

Particle Fluxes

- Ions: diffusing fuel ions (H, D, T)

diffusing impurities (wall materials, residual gases in

chamber adsorbed gases in surface)

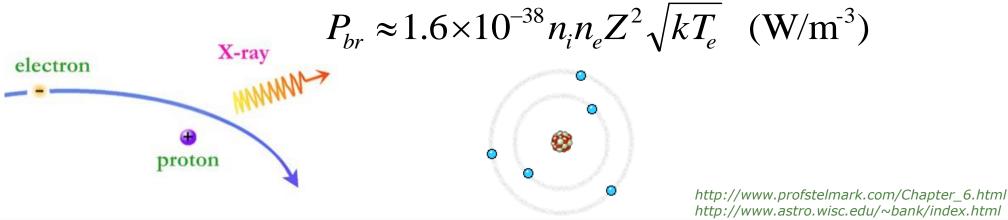

energetic ions from NBI, ICRH

- fusion alpha particles
- Electrons: diffusing plasma electrons runaway electrons
- Neutrals: recycling neutrals NBI neutrals i.e. shine-through
- Fusion neutrons

Fluxes to the Surface

- Energy Fluxes
 - Particle energies
 - Radiation energies
 - Heat conduction
- Photon Fluxes
 - Bremsstrahlung radiation
 - Cyclotron radiation
 - Impurity line radiations

Difference between particle energy flux and heat conduction?

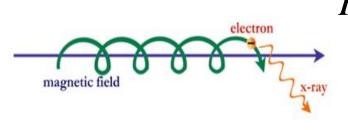

Plasma Radiation

Bremsstrahlung (Braking radiation)

- Process of radiation emission when a charged particle accelerates or decelerates
- Contribution from ions can be neglected due to their heavier mass $(m_p = 1836m_e)$ compared with that of electrons.
- Mainly due to e-i collisions:

in e-e or i-i collisions, radiation fields exactly cancel.

- X-ray wavelength range ($\lambda \sim 10^{-9}$ m): readily escaping from a plasma



6

Plasma Radiation

Cyclotron Radiation

- Due to the centripetal acceleration of charged particles owing to the helical motion by magnetic field lines
- contribution from ions can be neglected due to their heavier mass compared with that of electrons.
- In the far infrared radiation spectrum ($\lambda = 10^{-3}$ -10⁻⁴ m): partially re-absorbed in a plasma
- The emitted radiation may be reflected from the surrounding wall in a magnetic confinement fusion device and thereby re-enter the plasma.

$$P_{cyc}^{net} \approx 6.23 \times 10^{-20} n_e B^2 k T_e \psi \quad (W/m^{-3})$$

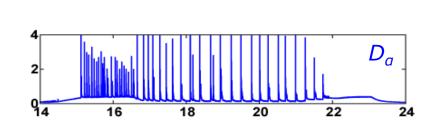
 ψ accounting for the complex processes of reflection and reabsorption of cyclotron radiation

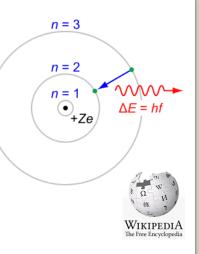
http://www.astro.wisc.edu/~bank/index.html

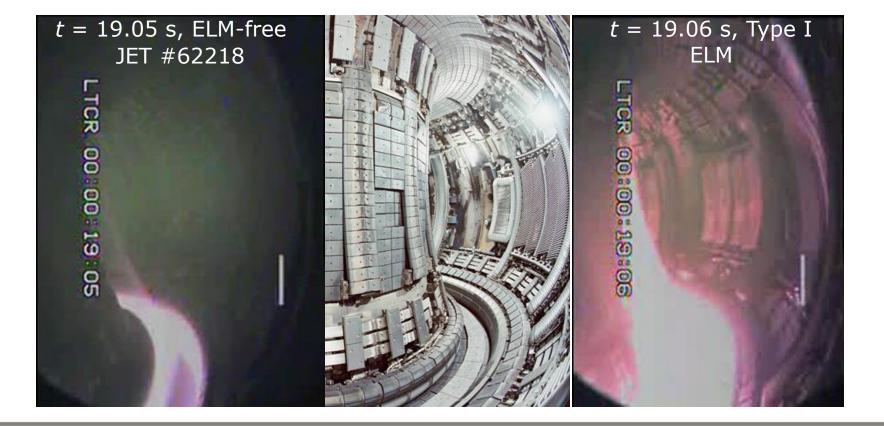
Plasma Radiation

• Line Radiation

- Due to radiative decay after electron collision excitation

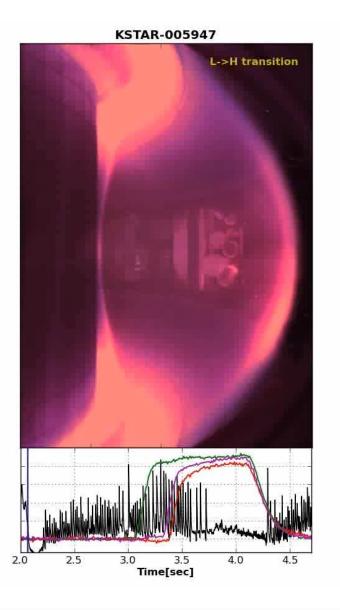

$$A_0^{+Z} + e \rightarrow (A_0^{+Z})^* \rightarrow A_0^{+Z} + \gamma + E_{Z}$$


$$P_L \approx 1.8 \times 10^{-38} n_Z n_e Z^4 \sqrt{T_e} ~(\text{W/m}^{-3})$$


Flux Excursions

Transient Flux Excursions

- Plasma instabilities can lead to transient heat load excursions.



Flux Excursions

Transient Flux Excursions

- Plasma instabilities can lead to transient heat load excursions.

Flux Excursions

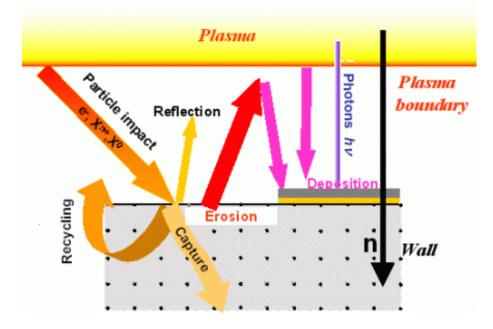
Localised Flux Excursions

- Loss of fast particles can lead to excessive local heat loads
 - charge exchange neutrals by heating with NBI
 - orbit losses of fast ions
 - runaway electrons

 $r_L = \frac{mv}{B|a|}$

Plasma wall interaction

Plasma-wall Interactions


Importance of Plasma-Wall Interaction

Shot number : 4202	2010/11/08	001	0:00:00:00
KSTAR TV1 (t=-100ms	:)		

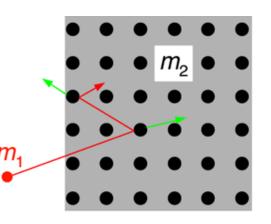
KSTAR first H-mode plasma with good shape control (#4202)

Plasma-wall Interactions

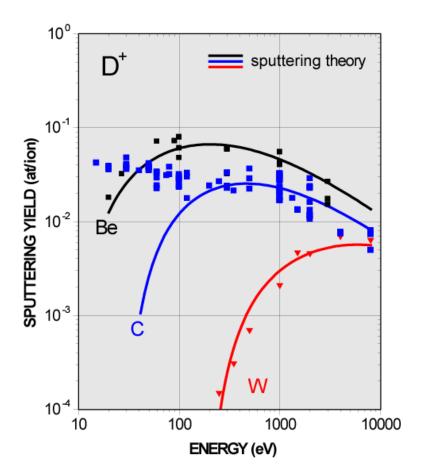
- Physical/chemical interaction between plasma and (surrounding) surface
 - Reflection by backscattering
 - Adsorption and desorption
 - Physical sputtering: Erosion
 - Chemical sputtering
 - Vaporisation and melting
 - Blistering and flaking
 - Electron emission
 - Radiation damage and transmutation by 14.1-MeV Neutron
 - Dust formation

http://www-rcp.ijs.si/mic/our_work/applications/fusion/fusion.php

Alteration of surface (wall erosion) and production of particle and photon fluxes \rightarrow Impurities


- Reflection by Backscattering
- Adsorption and Desorption
 - Residual cooler gases implanted inside wall \rightarrow release of gases

Physical Sputtering – Erosion


- Ejection of surface atom from (low-temperature) wall as a result of collision cascade in the lattice atoms by particles when acquired energy > surface binding energy
- Threshold exists in incident energy to produce sputtering

굴러들어온 돌이 박힌 돌 빼낸다.

Bad money drives out good.

- Physical Sputtering Erosion
 - For beryllium and tungsten, theoretical and experimental yields agree very well.
 - Carbon shows additional erosion with only weak dependency on impact energy
 - \rightarrow Chemical erosion

Chemical Sputtering

- Chemical reaction of incident projectiles with target atoms
- Formation of a volatile chemical compound leaving the solid: occurs only for certain target-projectile combinations

High Field Side (HFS) inner wall

antenna protection/outer wall

Vaporisation and Melting

- disruptive instabilities \rightarrow thermal shock on the wall

 \rightarrow spalling, cracking, melting, evaporation

Blistering and Flaking

- Blistering: gas bubble in $\sim \mu$ -thick surface layer (insoluble, He)
- Flaking: blister rupture by lateral stress and surface layer breaking

Vaporisation and Melting

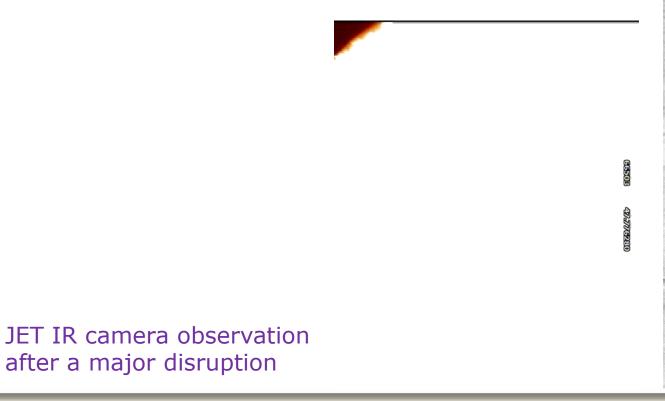
- disruptive instabilities \rightarrow thermal shock on the wall

 \rightarrow spalling, cracking, melting, evaporation

Blistering and Flaking

- Blistering: gas bubble in $\sim \mu$ -thick surface layer (insoluble, He)
- Flaking: blister rupture by lateral stress and surface layer breaking

Electron Emission

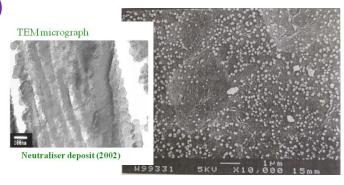

- Photoelectric, thermionic, X-ray, secondary

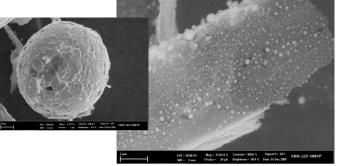
Radiation Damage and Transmutation by 14.1-MeV Neutron

- Knock-on collision \rightarrow interstitial, spikes, voids, displacements, ...
- Neutron capture reactions: (n,p), $(n,a) \rightarrow$ production of p, a in the first wall \rightarrow swelling, radiation damage of wall, diffusing back to plasma

Dust Formation

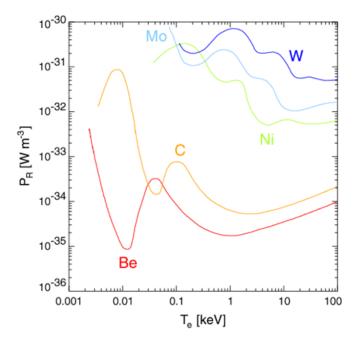
- ITER definition: solid particles/debris of size about 10 nm-100 μm
- Consequence of PWI/volume polymerisation in edge plasma
- Safety and operational issue (limit)


Suk-Ho Hong, "Current plasma-wall interaction activities in KSTAR", SNU Seminar, Seoul, 5 February, 2010


Dust Formation

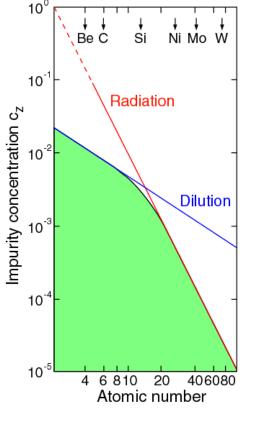
- ITER definition: solid particles/debris of size about 10 nm-100 μm
- Consequence of PWI/volume polymerisation in edge plasma
- Safety and operational issue (limit)

Mobilised "dusts" (Tore Supra)

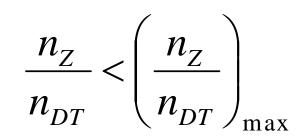


Nanoparticles/metal droplet (Tore Supra/JET/KSTAR)

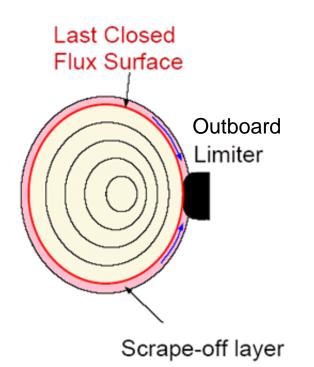
Suk-Ho Hong, "Current plasma-wall interaction activities in KSTAR", SNU Seminar, Seoul, 5 February, 2010


How to control impurity influx?

Maximal Permissible Impurity Concentration


At 10 keV

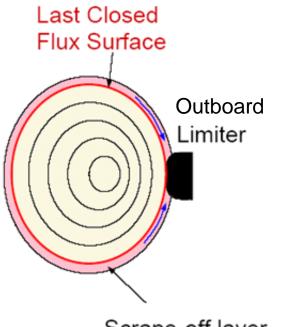
- Low Z (~10): $(n_Z/n_{DT})_{max} \sim 10\%$ (Ne)
- Medium Z (~26): (n_Z/n_{DT})_{max}~0.5% (Fe)
- High Z (~74): $(n_Z/n_{DT})_{max} \sim 0.01\%$ (W)


Maximal concentrations for sustained ignited plasma

• Maintain

Plasma Boundary Region Control

- Limiter


a material structure protruding from the main wall used to intercept particles at the plasma edge particularly to stop runaway electrons from damaging the vacuum vessel and to shadow in-vessel components from the plasma edge (limiting/defining the plasma size)

 \rightarrow Reflecting neutrals

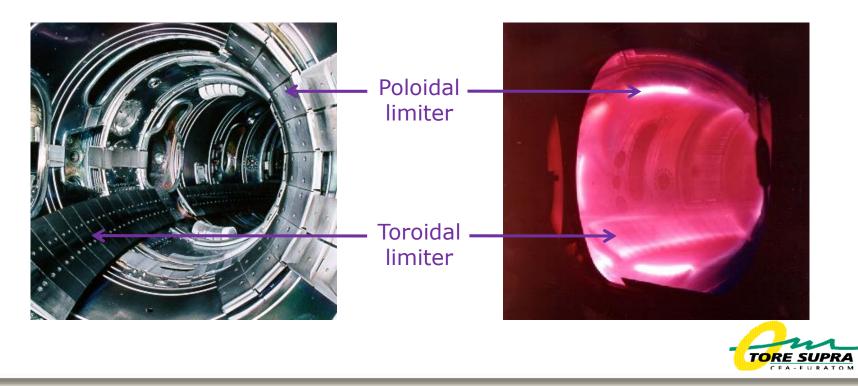
 \rightarrow Pumping out

Plasma Boundary Region Control

- Limiter

Scrape-off layer

Last Closed Flux Surfaces (LCFS):

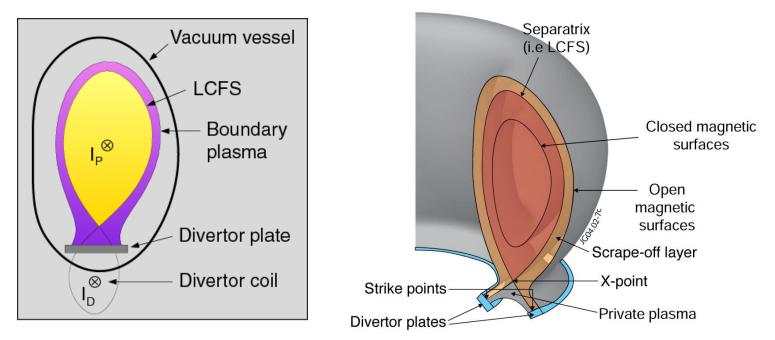

The magnetic surface that touches the innermost part of the limiter

Scrape-off Layer (SOL):

The plasma region located in the limiter shadow

i.e. between the LCFS and the vessel wall

- Plasma Boundary Region Control
 - Limiter problems
 - High heat load and sputtering rate on limiter
 - \rightarrow Impurities \rightarrow Low-Z coating of limiters (C or Be on W)



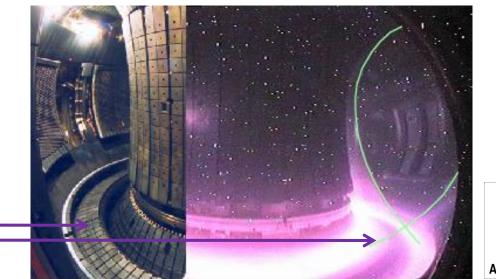
27

Plasma Boundary Region Control

Proposed by L. Spitzer, Jr. for stellarators

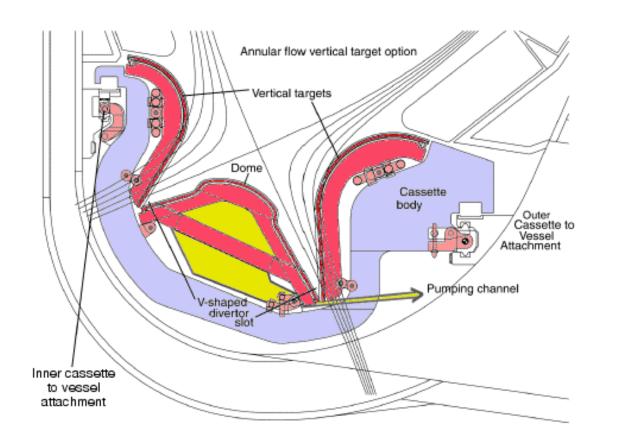
 Divertor: Bending outer magnetic fields away from plasma by means of auxiliary magnetic coils → Removing outer layer of plasma to external chamber → Cooling → Neutralising → Pumping away

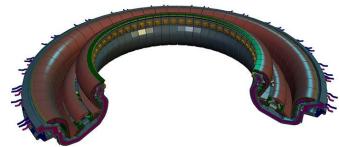
The magnetic boundary between confined plasma and edge/divertor plasma is called **separatrix** = **LCFS**

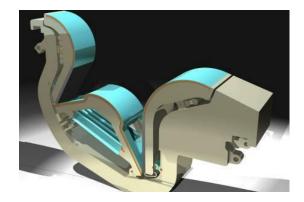

Plasma Boundary Region Control

- Divertor functions

Reduction of 1st wall bombardment (unloading) Reduction of impurity flow into plasma (shielding for impurity control) Exhaust plasma particles and power and removal of He ash


- Divertor problems
 - Complex coil systems High cost Difficult maintenance


The divertor in ASDEX Upgrade



- Plasma Boundary Region Control
 - Divertor

http://nuclearfusionwilliaco.weebly.com/the-tokamak.html

http://energyphysics.wikispaces.com/Tokamak+Thrust+Engine https://www.iter.org/fr/album/media/7%20-%20technical