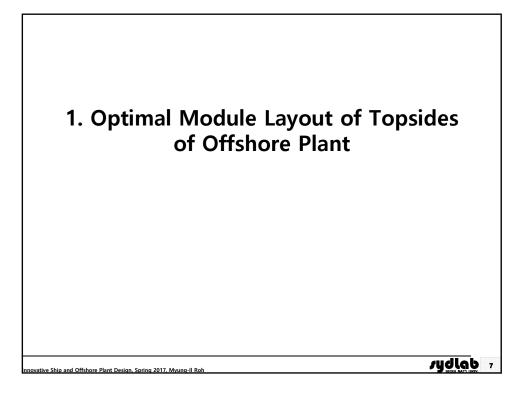
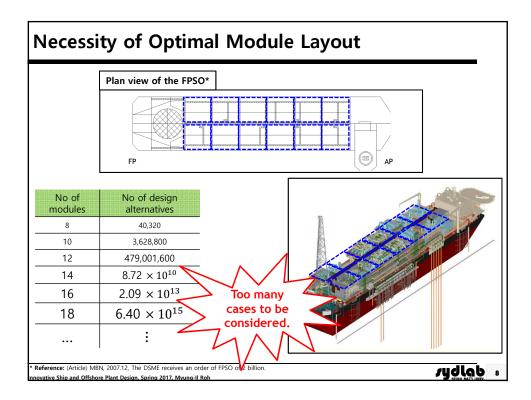
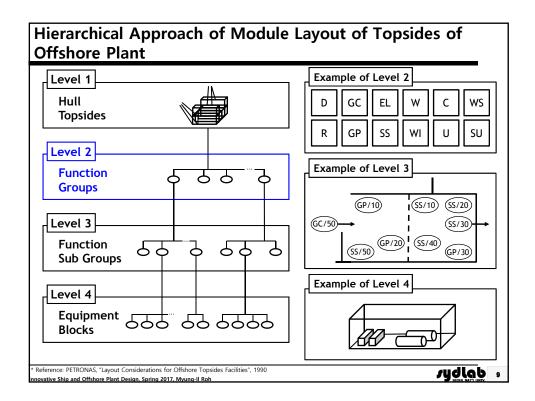
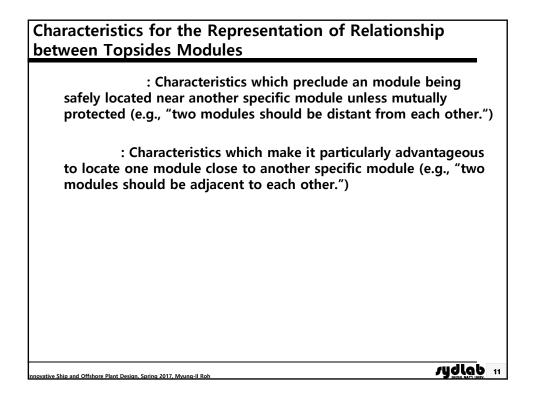
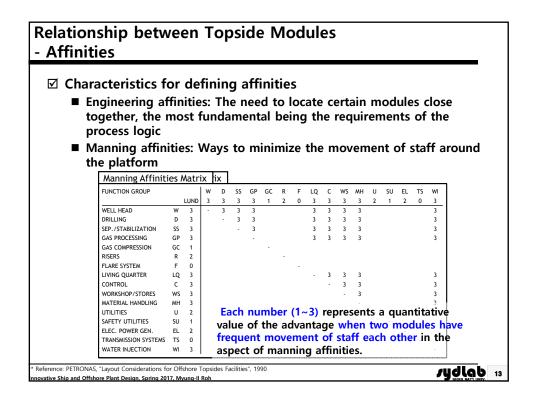

Contents	
☑ Ch. 1 Introduction to Offshore Plant Design	
 Ch. 2 Sizing and Configuration of Topside Systems Ch. 3 Weight Estimation of Topside Systems 	
☑ Ch. 4 Layout Design of Topside Systems	
nnovative Ship and Offshore Plant Design, Spring 2017, Myung-Il Roh	

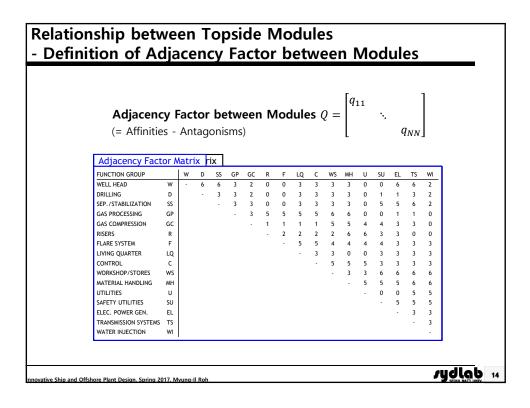

1

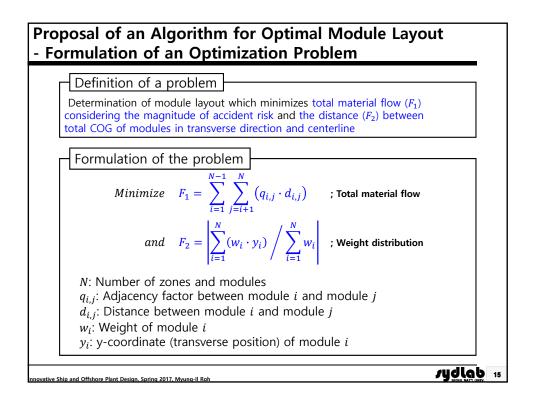


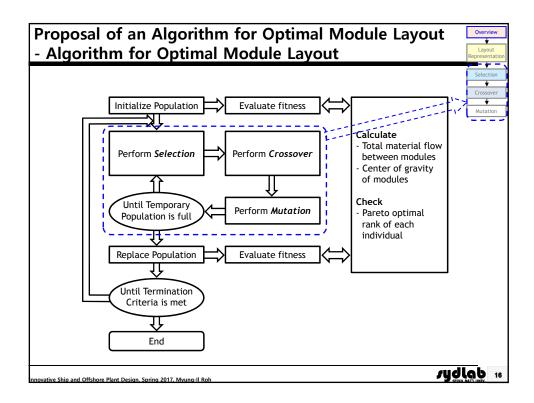


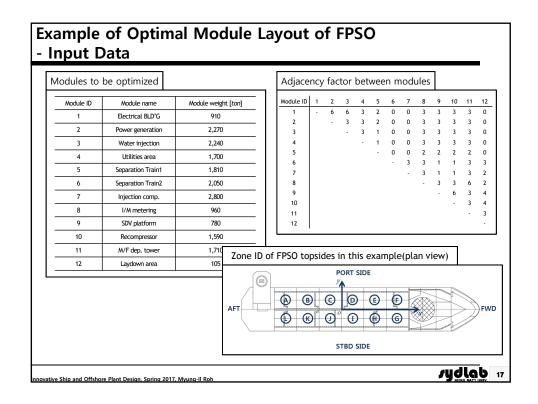


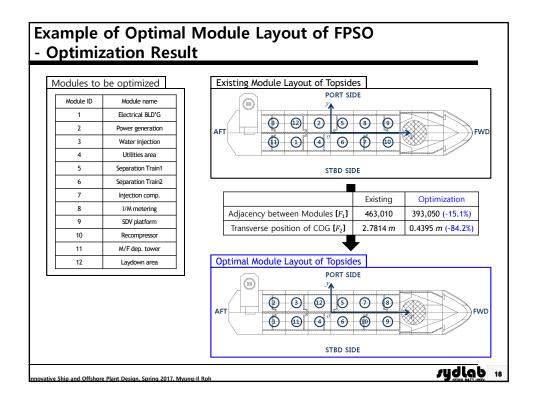


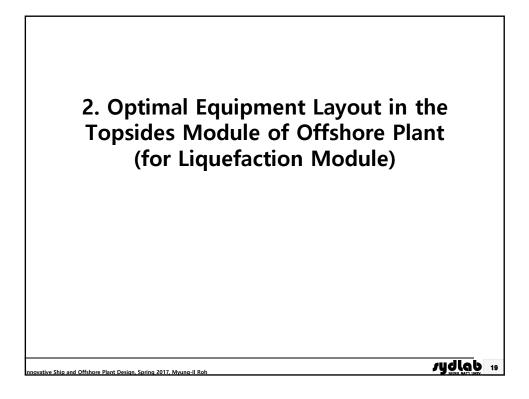


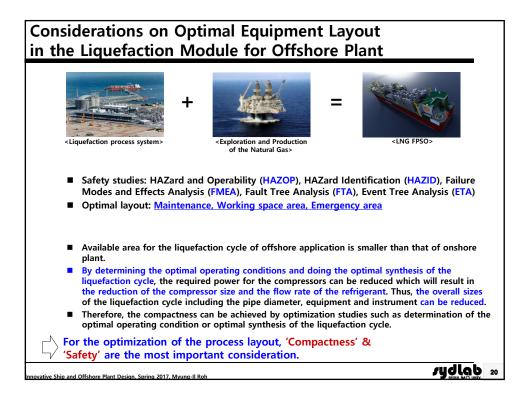

ub Groups							
Wellhead	w	Gas Compressing	GC	Workshop/Stores	WS	Safety Utilities	SU
Xmas Trees	W/10	Compression Train	GC/10	Workshop - Mechanical	WS/10	Fire Water Pumps	SU/10
Manifold	W/20	Scrubber	GC/20	Workshop - Electrical	WS/20	Emergency Generator	SU/20
Well Control	W/30	Coolers	GC/30	Stores	WS/30	Emergency Switchgear	SU/30
Conductors	W/40	Lube Oil/Seal Oil	GC/40	Laboratory	WS/40	UPS	SU/40
		Gas Metering	GC/50	Storage - Standby Fuel	WS/50	Survival Craft	SU/50
Drilling	D			Storage - Jet Fuel	WS/60	Bridges	SU/60
BOP	D/10	Risers	R	Storage - Flamm./Comb. Liquids	WS/70		
Drilling Derrick	D/20	Risers/Manifolds	R/10	Storage - Process Consumables	WS/80	Electrical Power Generation	_
Drilling Support	D/30	ESD Valves	R/20			Driver / Power Generator	EL/10
Mud Systems (Active)	D/40	Pigging Facilities	R/30			Switchgear	EL/20
Drilling Control	D/50	Subsea Sat. Facilities	R/40	Material Handling	мн	Transmission Systems	TS
Separation/Stabilization	SS	Flare System	F	Cranes	MH/10	Relief and Blowdown	TS/10
Separation	SS/10	Flare Knockout	F/10	Laydown Areas	MH/20	Drains - Open	TS/20
Stabilization	SS/20	Tower (incl. tip)	F/20			Drains - Closed	TS/30
Test Separation	SS/30					Piping - Process	TS/40
Produced Water Treatment	SS/40	Living Quarter	LQ	Utilities	U	Piping - Safety	TS/50
Oil Export Pumping	SS/50	Living Quarters	LQ/10	Seawater System	U/10	Piping - Utilities.	TS/60
Oil Metering	SS/60	Living Quarters Utilities	LQ/20	Instrument Air System	U/20	Cables - Instrumentation	TS/70
		Sheltered Area	LQ/30	Diesel System	U/30	Cables - Electrical	TS/80
Gas Processing	GP	Helideck	LQ/40	HVAC	U/40	Ducting - HVAC	TS/90
Gas Processing	GP/10			Potable Water	U/50	· · · · · · · · · · · · · · · · · · ·	
Condensate Processing	GP/20	Control	с	Sewage Systems	U/60	Water Injection	WI
Dehydration	GP/30	Central Control	C/10	Heating Systems	U/70	Injection	WI/10
Fuel Gas	GP/40	Local Control	C/20	Cooling Systems	U/80	Treatment	WI/20

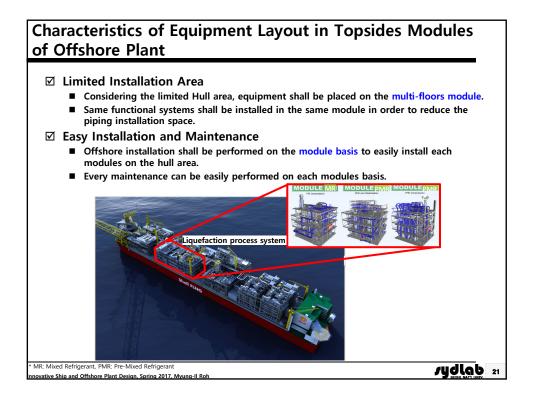


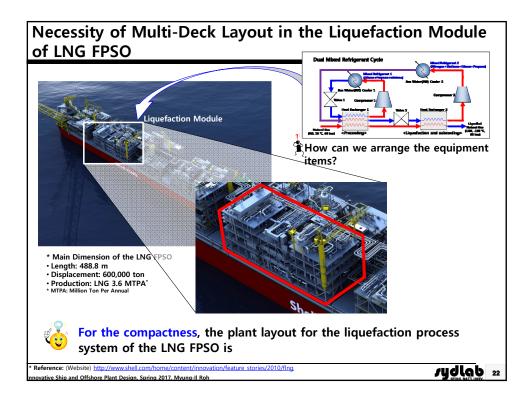

	haracterist ■ Active be major inc	ha	vior c				-							of	fa	m	od	ule	e in	itiating
												pe	nsi	ty	fo	r a	m	od	lule	e to escalate
-	major inc		_	niti	at	ed	els	sev	vhe	ere										
	Antagonisms Ma	atri	×																	-
1	FUNCTION GROUP			W	D		GP		R	F	LQ			MH	U		EL		WI	
			REACTIVE	3	3	3	3	2	3	3	3	3	2	2	2	3	3	3	2	
	WELL HEAD	w	ACTIVE 3																	
	DRILLING	D	3	3							Го	ما م				11	2)			lanta a
	SEP./STABILIZATION	SS	2	3	3															sents a
	GAS PROCESSING	GP	2	3		3					aua	ant	ita	tive	e va	alu	е о	f tł	he r	risk when tw
	GAS COMPRESSION	GC	3	3			3													liacent zones
	RISERS	R	3	3	3	3	3	3												-
I '	FLARE SYSTEM	F	2	3			3		3		clo	se.	Th	ie h	nigl	her	nu	ıml	ber,	the more ris
	LIVING OUARTER	LO	0	3			3		3	2	lav	0.11	F.		-					
	CONTROL	C	0	3			3		3	3		-u	•							
	WORKSHOP/STORES	ws	0 0	3	3		2		3	2	1	1								
	WATERIAL HANDLING	MH	1	3	3		2		3	2	2	2	1							
		U	1	3			2		3		2	2	1	1						
	SAFETY UTILITIES	SU	1	3			3		3	3		2	1	2	2					
	ELEC. POWER GEN.	EL	3	3			3		3	3		3	2	2	2	3				
	TRANSMISSION SYSTEMS		3	3	3	3	3	3	3	3	3	3	2	2	2	2	3			
	100101101101101101101101101101101101101	. 3	2	5	5	5	5	3	3	2	1	5	4	4	2	1	2	2		1

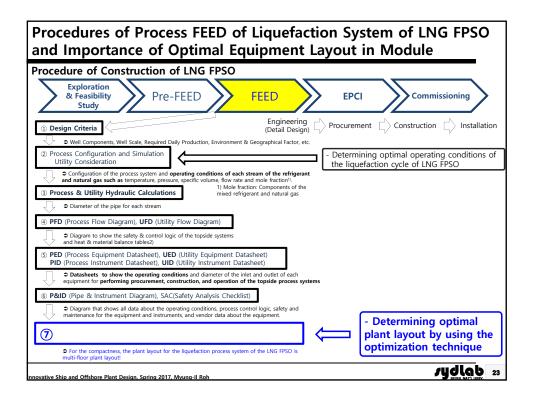


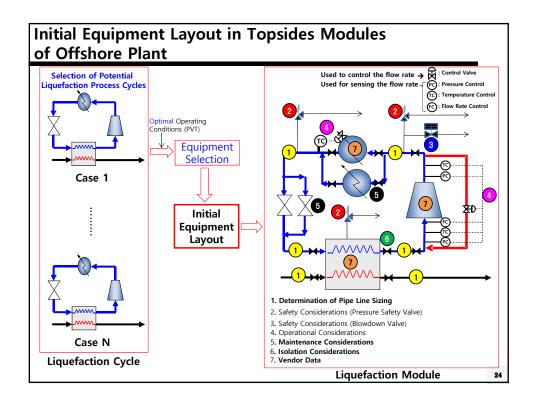


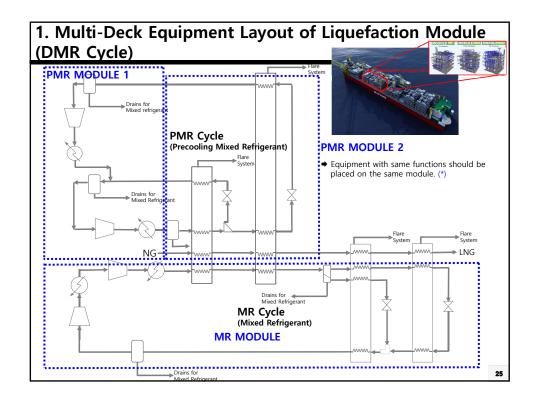


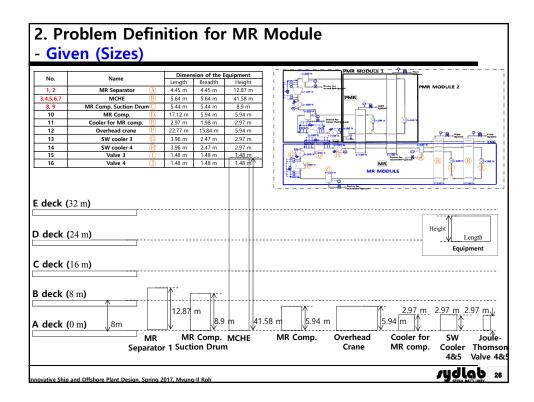


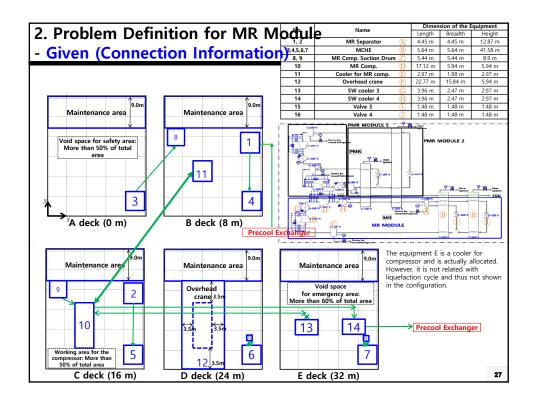


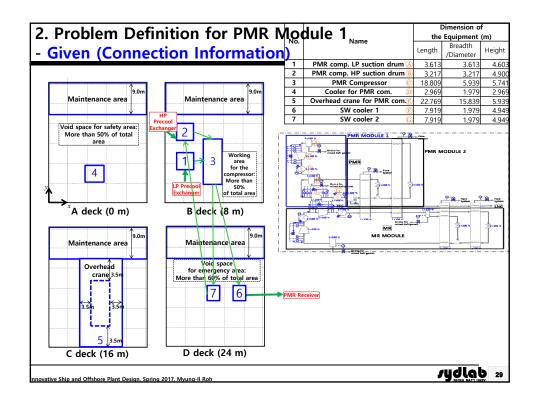


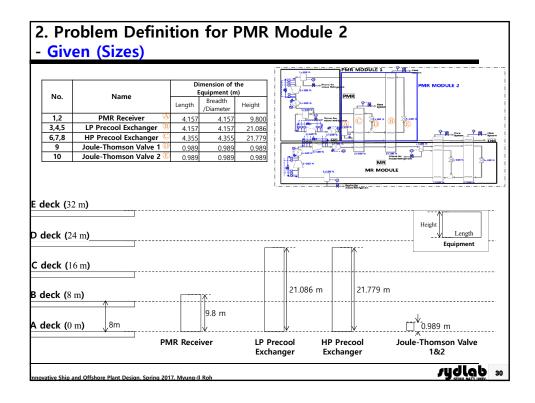


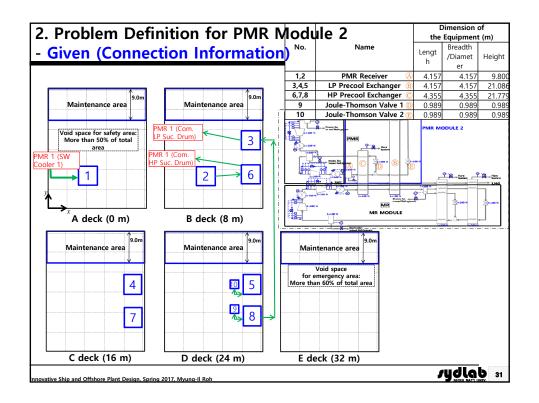


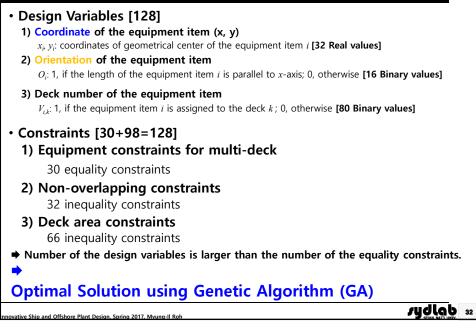


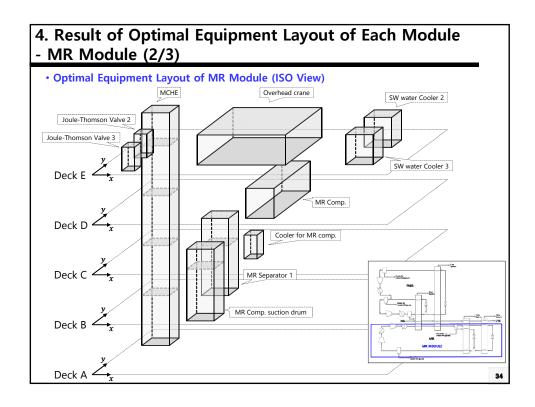


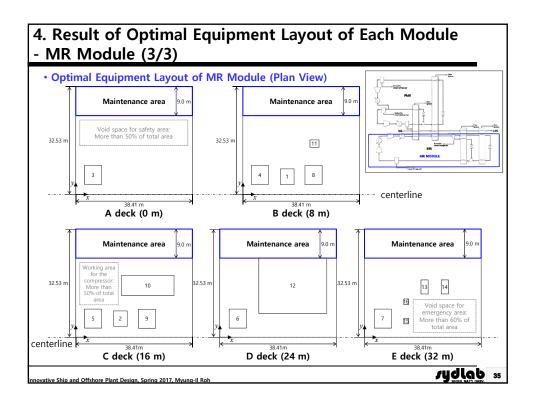




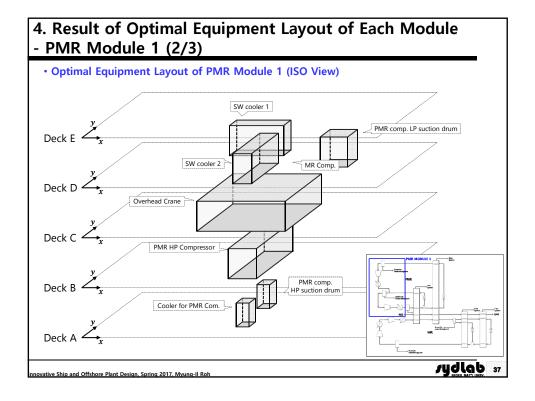


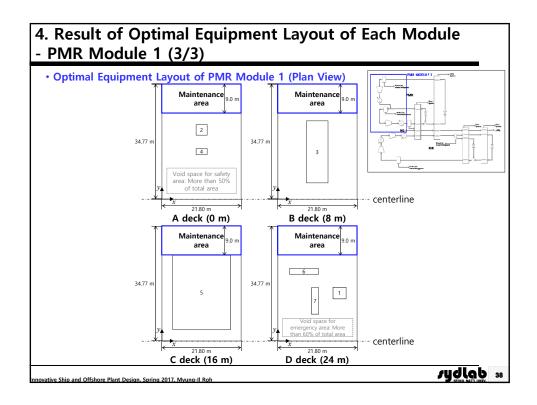

		-	imension of t			PMR MODULE 1	<u> </u>
No.	Name	Length	Equipment (m Breadth /Diameter	1) Height		PMR	PMR MODULE 2
1	PMR comp. LP suction drum	3.613	3.613	4.603		R+;;;	L
2	PMR comp. HP suction drum	3.217	3.217	4.900	1x100 W		
3	PMR Compressor	18.809	5.939	5.741			× Frank
4	Cooler for PMR com.	2.969	1.979	2.969			
5	Overhead crane for PMR com	22.769	15.839	5.939			
6	SW cooler 1	7.919	1.979	4.949			
7	SW cooler 2	7.919	1.979	4.949	1	M	
						an n MR Mu 	
	eck (24 m)						Height
	eck (24 m)						Height
C de							Height
C de B de	ck (16 m)	4.9 n	1	 ↓4.6 m	5.7 m	MR M	Height Equipment

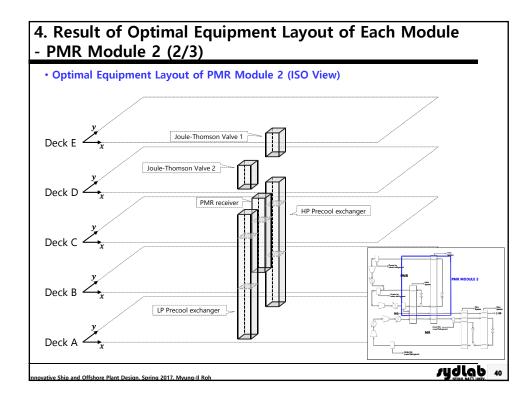


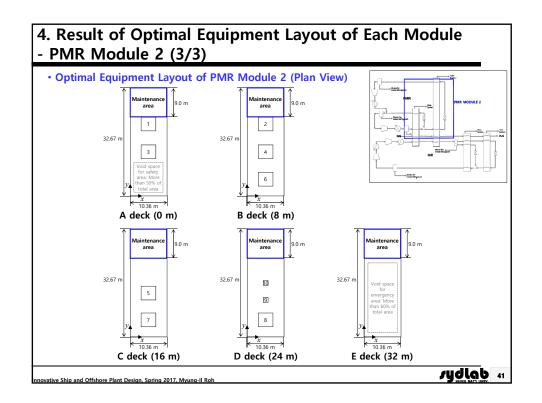

3. Mathematical Module for Multi-Deck Equipment Layout - Model for Optimal Equipment Layout of MR Module

Opt	imal Values of Design Variabl	les for	MR M	odule					
	Equipment	xi	y _i				$V_{i,k}$		
No.	Name	[<i>m</i>]	[m]	O _i	V _{i,I}	V _{i,2}	V _{i,3}	V _{i,4}	V _{i,5}
1	MR Separator 1 on lower deck	17	13	1	0	1	0	0	0
2	MR Separator 1 on upper deck	17	13	1	0	0	1	0	0
3	MCHE on A deck	16	4	1	1	0	0	0	0
4	MCHE on B deck	16	4	1	0	1	0	0	0
5	MCHE on C deck	16	4	1	0	0	1	0	0
6	MCHE on D deck	16	4	1	0	0	0	1	0
7	MCHE on E deck	16	4	1	0	0	0	0	1
8	MR Comp. suction drum on lower deck	4	20	1	0	1	0	0	0
9	MR Comp. suction drum on upper deck	4	20	1	0	0	1	0	0
10	MR Comp.	8	10	0	0	0	0	1	0
11	Cooler for MR comp.	8	10	0	0	0	1	0	0
12	Overhead crane	8	10	0	0	0	0	0	1
13	SW water Cooler 2	8	8	1	0	0	0	0	1
14	SW water Cooler 3	8	14	1	0	0	0	0	1
15	Joule-Thomson Valve 2	17	9	1	0	0	0	0	1
16	Joule-Thomson Valve 3	17	9	1	0	0	0	0	1






4. Result of Optimal Equipment Layout of Each Module	
- PMR Module 1 (1/3)	


No. Nam	ne	[<i>m</i>]	[]	O_i				
		[]	[m]		$V_{i,I}$	V _{i,2}	$V_{i,3}$	V _{i,4}
1 PMR comp. LP s	suction drum	10.9	7.1	0	0	0	0	1
2 PMR comp. HP	suction drum	10.9	14.35	0	1	0	0	0
3 PMR HP Co	mpressor	10.9	14.35	0	0	1	0	0
4 Cooler for P	MR Com.	10.9	14.35	0	1	0	0	0
5 Overhead	Crane	10.9	14.35	0	0	0	1	0
6 SW coo	ler 1	17.45	14.35	0	0	0	0	1
7 SW coo	ler 2	4.35	14.35	0	0	0	0	1

	Equipment	x _i	y _i				$V_{i,k}$		
No.	Name	[<i>m</i>]	[<i>m</i>]	Oi	V _{i,I}	V _{i,2}	V _{i,3}	$V_{i,4}$	V _{i,5}
1	PMR receiver on lower deck	7	8	1	0	1	0	0	0
2	PMR receiver on upper deck	7	8	1	0	0	1	0	0
3	LP Precool exchanger on B deck	15	17	1	1	0	0	0	0
4	LP Precool exchanger on C deck	15	17	1	0	1	0	0	0
5	LP Precool exchanger on D deck	15	17	1	0	0	1	0	0
6	HP Precool exchanger on B deck	15	8	1	1	0	0	0	0
7	HP Precool exchanger on C deck	15	8	1	0	1	0	0	0
8	HP Precool exchanger on D deck	15	8	1	0	0	1	0	0
9	Joule-Thomson Valve 1	11	11	1	0	0	0	1	0
10	Joule-Thomson Valve 2	11	17	1	0	0	0	1	0

tion Area for Ea	ch Module			
Deck Area	Results	Area (m²)	Deck Area	
	38.41 m * 32.53 m	1,249.48	A Deck	
	38.41 m * 32.53 m	1,249.48	B Deck	
MR Module	38.41 m * 32.53 m	1,249.48	C Deck	
	38.41 m * 32.53 m	1,249.48	D Deck	
	38.41 m * 32.53 m	1,249.48	E Deck	
	21.80 m * 34.77 m	757.99	A Deck	
PMR Module 1	21.80 m * 34.77 m	757.99	B Deck	
	21.80 m * 34.77 m	757.99	C Deck	
	21.80 m * 34.77 m	757.99	D Deck	
	10.36 m * 32.67 m	338.46	A Deck	
	10.36 m * 32.67 m	338.46	B Deck	
PMR Module 2	10.36 m * 32.67 m	338.46	C Deck	
	10.36 m * 32.67 m	338.46	D Deck	
	10.36 m * 32.67 m	338.46	D Deck	
Т	otal Area	141,800.10		

