

Contents	
☑ Ch. 1 Introduction to Ship Design	
☑ Ch. 2 Design Equations	
☑ Ch. 3 Design Model	
Image: Ch. 4 Deadweight Carrier and Volume Carrier	
☑ Ch. 5 Freeboard Calculation	
☑ Ch. 6 Resistance Prediction	
☑ Ch. 7 Propeller and Main Engine Selection	
☑ Ch. 8 Hull Form Design	
Image: Ch. 9 General Arrangement (G/A) Design	
☑ Ch. 10 Structural Design	
In Ch. 11 Outfitting Design	
	,
nnovative Ship and Offshore Plant Design, Spring 2017, Myung-II Roh	rydlab 2

Contents
 ☑ General & Materials ☑ Global Hull Girder Strength (Longitudinal Strength) ☑ Structural Design of Midship Section of a 3,700 TEU Container Ship
 Appendices Local Strength (Local Scantling) Buckling Strength Structural Design of Midship Section of a 3,700 TEU Container Ship
nnovative Ship and Offshore Plant Design, Spring 2017, Myung-II Roh

(2) Princip	al Dim	ension	S		DNV Rules, Jan	n. 2004,Pt.3 Ch.1 Sec.1 101
The following 1) Rule len : Length of a	principal di gth (L o ship used	mensions a r L_s) for rule sca	are used in antling proc	accordance cedure	e with DNV	rule.
 Distar stem Not to than 9 Startin 	to the axis to the axis b be taken 97%, of the ng point of	$0.96 \cdot L_{WL}$ summer loo of the rude less than 9 extreme le rule length	< L < 0.9' ad waterlin der stock 16%, and ne ength on the n: F.P	$7 \cdot L_{WL}$ e (L_{WZ}) from eed not be le summer	n the fore s taken grea load waterl	ide of the ter line (<i>L_{WL}</i>)
Ex.	L _{BP}	L _{WL}	0.96·L _{WL}	0.97·L _{WL}	L	
	250	261	250.56	253.17	250.56	
	250	258	247.68	250.26	250.00	
	250	255	244.80	247.35	247.35	
2) Breadth : Greatest <u>m</u> e	oulded brea	adth in [m]	, measured	at the sum	ımer load v	vaterline
novative Ship and Offshore Plant I	Design, Spring 2017, My	yung-II Roh				JUCIAD 7

(4) Mate	erial Fac	IV Rules, Jan. 2004,Pt.3 Ch.1 Sec.2 mes M. Gere, Mechanics of Materials 7th Edition, mson, Chap.1, pp.15~26			
The mat scantling	erial factor f_1 gs and in exp	is included in t pressions giving	he various fo allowable str	ormulae for esses. ¹⁾	
Material	Yield Stress	<u> </u>	Material	Ultimate	
Designation	(N/mm ²)	$\sigma_{_{NV-NS}}$	Factor (f_1)	Stress Yield stress B C	
NV-NS	235	235/235 = 1.00	1.00	Proportional // //	
NV-27	265	265/235 = 1.13	1.08	O Perfect Strain Necking	
NV-32	315	315/235 = 1.34	1.28	Lincar plasticity hardening region or yielding	
NV-36	355	355/235 = 1.51	1.39	* Yield Stress (σ_y) [N/mm ²] or [MPa]: The magnitude of the load required to	
NV-40	390	390/235 = 1.65	1.47	cause yielding in the beam. ²⁾	
* NV-NS: Norn * NV-XX: High * High tensile steel: A ty resistance to corrosion	nal Strength Stee Tensile Steel ype of alloy steel that p than carbon steel. The	I (Mild Steel)	roperties or greater tween 0.05-0.25% to	* A: 'A' grade 'Normal Strength Steel'	
retain formability and added for strengthenir	weldability, including u ng purposes.	p to 2.0% manganese, and o	other elements are	^ Ан: A grade 'High lensile Steel'	
novative Ship and Offshore	Plant Design, Spring 2017,	Myung-II Roh		YUIGD 1	

sydlab 21

(DNV Pt.3 Ch.1 Sec.5 C303), 2011

303 The section modulus requirements about the transverse neutral axis based on cargo and ballast conditions are given by:

$$Z_{O} = \frac{\left|M_{S} + M_{W}\right|}{\sigma_{l}} 10^{3} \quad (\text{cm}^{3})$$

 $\begin{aligned} \sigma_l &= 175 \ f_1 \ \text{N/mm}^2 \ \text{within} \ 0.4 \ \text{L} \ \text{amidship} \\ &= 125 \ f_1 \ \text{N/mm}^2 \ \text{within} \ 0.1 \ \text{L} \ \text{from} \ \text{A.P. or} \ \text{F.P.} \end{aligned}$

Between specified positions σ_l shall be varied linearly.

novative Ship and Offshore Plant Design, Spring 2017, Myung-II Roh

Distributed Loads	Load Curve, $f_S(x)$ Weight, $w(x)$	$\rightarrow \begin{array}{ c c } Actual Still Water \\ Shear Force, V_S(x) \\ V_s(x) = \int_{-\infty}^{x} f_s(x) dx \\ \end{array}$	Actual Still Water Bending Moment, $M_S(x)$
✓ Example of a 3 700 TELL Container Shin in	Buoyancy, $b(x)$	Scantling Condit	$M_{S}(x) = \int_{0}^{0} V_{S}(x) dx$
- Principal Dimensions & Plans	f non	Midthip con	tion
Principal dimension LENGTH O. A. 257. 988 M LENGTH B. P. 245. 240 M BREADTH MOULDED 32. 20 M DEFITH MOULDED 19. 30 M DESIGNED DRAUGHT MOULDED 10. 10 M SCANTUNG DRAUGHT MOULDED 2. 50 M			
- Loading Condition: Homogeneous 10 ton	Scantling Condition (Sa ING STATE	ailing state)	Frame space: 800mm
DRAUGHT_F_P = 12.260 DRAUGHT_MIDSHIP = 12.457 DRAUGHT_A.P = 12.657 TRIM BY SYERN = .394 PROPELLER 1/D = 160.3 DISPLACEMENT = 66B13.6) M K.M.T ' M KG (SOLID) M GM (SOLID) M FREE SURF. CORR % GOM (FLUID) 5 T KG0 ACTUAL (FLU)	= 14 = 13 = 1 . (GGo) = = 1 ID) = 13	.889 M 1.586 M .303 M .059 M .244 M 1.645 M
ORAUGHT AT LCF = 12.483 LCB FROM A.P = 115.677 LCG FROM A.P = 115.048 TRJM LEVER : A = .632	B M TRIM (DIS*A)/(M) 'M FREE SURF. MOM. M M.T.C. LCF FROM A.P	FC*100) = = = 100 = 106	.394 M 3921 T-M 72.0 T-M .275 M
DEGREE = 0 5.0 10.0 15. KN = .000 1.296 2.591 3.86 KG0×SIN0 .000 1.189 2.369 3.55 GZ = .000 .107 .222 .38	0 20.0 30.0 40 2 5.168 7.614 9.5 2 4.667 6.823 8.7 0 .501 .791 .8	.0 50.0 60.0 92 10.930 11.697 71 10.453 11.817 21 .477120	75.0 11.959 13.180 -1.221
nnovative Ship and Offshore Plant Design, Spring 2017, Myung-Il Roh			sydlab 28

Distributed Loads in Still Wat		Actual Still Wat	er Act	ual Still Water				
		Shear Force, V _S	r) Ben	ding Moment, $M_S(x)$				
- Lightweight	Weight, w(x) Buoyancy, b(x)	$V_{S}(x) = \int_{0}^{x} f_{S}(x)$)dx M	$I_{s}(x) = \int_{0}^{x} V_{s}(x) dx$				
Example of a 3,700 TEU Container Ship		LIGHT WEIGHT SUMMARY						
	Bull No : 1	329 3 700 TELL CON	TATNER VESSE	r.				
			TAINER VEGGE					
	NO AFT END	FORE END WEIGHT	L.C.G	MOMENT				
	1 5 000	14 350 616 00	2 000	4313 0				
	2 14.350	43.400 1387.10	31.400	43554.9				
	3 43.400	232.320 7591.50	128,620	976418.7				
	4 232.320	252.240 732.30	239.280	175224.7				
	5 27.200	41.600 476.40	35.800	17055.1				
	6 .000	245.240 30.00	122.620	3678.6				
	7 43.400	232.320 340.00	134.200	45628.0				
	9 =3.400	2 400 151 90	114.400	13013.0				
<u>x</u>	10 .000	252.240 224.00	120.000	26880.0				
FP FP	11 202.240	232.320 137.90	217.000	29924.3				
AP	12 43.400	202.240 1053.00	121.700	128150.1				
LIGHTWEIGHT DISTRIBUTION DIAGRAM	13 143.280	146.680 55.00	144.980	7973.9				
TONNES	14 70.480	73.880 55.00	72.180	3969.9				
2400 - Engine	15 14.350	232.320 115.90	114.360	13254.3				
240.0	17 232 320	245 240 118 30	238 600	28226 4				
220.0	18 36.000	170.000 3.00	81.000	243.0				
	19 -5.000	4.000 50.00	500	-25.0				
200.0	20 29.000	41.600 15.50	37.100	575.0				
1800 Bow I hruster	21 -3.500	4.000 19.20	.000	. 0				
	22 4.000	11.200 34.30	7.600	260.7				
160.0 Emergency	23 41.600	1/3.900 62.50	105.760	6610.0				
Dump	25 239 000	243 000 5 40	241 000	1301 4				
140.0 Crano Pullip	26 11.200	232,320 39,20	121.700	4770.6				
1200	27 11.200	232.320 191.30	121.700	23281.2				
	28 27.200	41.600 214.50	36.000	7722.0				
100.0	29 23.230	37.600 979.00	30.400	29761.6				
	30 11.200	41.600 289.50	22.000	1246 6				
0.0	32 12.000	41.600 150.70	28.000	4219.6				
60.0 - A /	33 11.200	41.600 158.60	28.000	4440.8				
	34 11.200	41.600 95.90	28.000	2685.2				
40.0	35 11.200	218.480 165.00	114.240	18849.6				
20.0	36 27.200	41.600 8.50	36.000	306.0				
	38 27 200	41.600 43.00	30.000	154 8				
	39 27.200	41.600 5.70	36.000	205.2				
0 25 50 74 99 125 150 175 200 226 251 276 301 326 F	R.NO							
	LIGHT SHIP TO	TAL = 15998.10	103.228	1651446.5				

Distributed Loads in Still Wat	oad Curve, $f_{S}(x)$	Actual Still Water	\rightarrow	Actual Sti	ll Wat	ter
	Weight w(r)	Shear Force, $V_S(x)$		Bending I	Mome	nt, $M_S(x)$
- Deadweight	Buoyancy, b(x)	$V_{S}(x) = \int_{0}^{x} f_{S}(x) dx$		$M_s(x) =$	$\int_{0}^{x} V_{s}($	(x)dx
Example of a 3,700 TEU Container Ship -Loading plan in homogenous 10 ton scantling condit	Deadwei in homo	ght distribution in lo genous 10 ton scant	ongitu ling o	udinal direct	tion	
	SHI	NO.61 HOMO.10T SCANTLINE	З ДЕРАЯТІ	URE (2. 918 TEU)		6 9
PROFILE	COMPARTMENT	EDEATION FILL S.6 DR NEIG RATIO UNIT FR.ND. (\$3 WEIGHT (NT	PRDI 2 A.P	BVDGA TRAMON B.L	MOMENT (T-W)	MOMENT (T+H)
	M0 1 HD1/01 711 N0 2 400.01 200 N0 3 400.01 200 N0 4 400.01 200 N0 5 400.01 100 N0 6 400.01 100 N0 6 400.01 100 N0 6 400.01 100 N0 6 400.01 100	224 0-2232.0 10.00 710 218 0-224.0 10.00 2040 54 0-160.0 10.00 2040 544 0-160.0 10.00 2010 544 0-160.0 10.00 2010 546 0-160.0 10.00 2010 86 0-126.0 10.00 2640 92 0-00.0 10.00 2640	0 216 22 1879 84 1979 84 1979 84 1979 84 1977 84 1977 9 1977 9 10	29 1538777 15 653 15 381076 12 440 19 450526 11 347 10 305250 10 946 10 162720 10 946 10 254020 10 946 14 2045 11 020	15114 25396 33999 30638 16419 32780 32780 32992	000000000000000000000000000000000000000
	T0 FAL C0474.1402 N0.2 1 443.071 (20) N0.2 444.071 (20) N0.2 444.071 (20) N0.5 444.071 (20) N0.5 444.071 (20) N0.5 444.071 (20) N0.5 444.071 (20) N0.7 44.071 (20) APT (10) (20)	DARD HELO 1264 1264 1202 0 10 <th10< th=""> 10 10</th10<>	0 211 24 0 211 24 0 185 10 120 8 0 120 8 0 120 8 0 57 6 0 11 5	1947478 46567 22.944 1151025 22.944 1151025 22.944 10237784 28.146 10237584 28.146 10327584 28.497 103289 29.497 103284 28.498 1151467 27.854 115247 22.631	101530 5048 19344 47393 73294 40015 6,2557 6,4593 29873	0.000000
			0 440 40 00 440 40 00 440 40 00 440 40 4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	388705 2205 2973 2973 1156 9553 9553 9553 303 316 316 316 2964 2977 2967 2977 2077 2077 2077 2077 2077 2077 2077 2077 2077 20	
-Deadweight distribution curve in homogenous	A.P. THICH	-2 0- 14 0 500 0 1 0250 486 -2 0- 14 0 500 0 1 0250 486 	8 6 01	8 2010 11.090 1952134 5 1267 15 113	89101 2613	0 275
10 ton scantling condition	F (W) TK [9] TOTAL FRESH WAT	6.0-14.0 100.0 1.0000 100 10 0-210.0 90.0 9000 1202	.8 7.61 .7 .4 159.05	4 1449 15.111 2716 0 191213 6.778	2008 5481 8150	205 670 22
	NO 1 H F 0 TK SI NO 2 H F 0 TK SI NO 2 H F 0 TK FI NO 3 H F 0 TK FI NO 3 H F 0 TK FI NO 3 H F 0 TK FI H F 0 SI FI	H0 8-214 0 04.8 04000 1260 00 8-125.0 94.8 94001 1107 00 8-125.0 94.8 94001 1107 00 8-125.0 94.8 92001 1107 52.4 84.0 93.8 92012 576 52.4 80.0 93.6 9202 576 44.0 52.9 90.6 9202 576 94.4 6-52.9 90.6 920.6 159 94.4 6-52.9 90.6 920.6 159	4 4 4 2 2 8 2 4 5 5 5 8 0 8 5 7 7 5 8 0 8 5 7 7 5 8 0 8 5 7 7 5 8 0 8 5 7 7 5 8 0 8 5 7 4 5 5 5 8 0 8 5 4 5 5 5 5 8 0 8 5 4 5 5 5 5 8 0 8 5 4 5 5 5 5 5 8 0 8 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Image: Physical and P	8150 2690 1,233 1,333 685 1,150 1,025	200 200 1114 1119 200
220.0	107AL FUEL OIL 0.0.5708.7K 09 1.0.5E09 1K 09	14.0-20.0 80.0 8500 246 24.0-20.0 80.0 8500 246 34.0-20.0 80.0 8500 38	.4 9 16 74 6 21 21	640573 8 4128 14.146 0 818 12.988	37277 3487 501	2375 107 10
	1074. DIESEL 0 MAIN L.D.SUPP II MAIN L.D.SUPP II MAIN L.D.SUPP II MAIN L.D.SUPP II MAIN L.D.SUPP II MAIN L.D.SUPP II G.E.L.D.SUPP II G.E.L.D.SUPP II G.E.L.D.SUPP II	27 0-45 3 90 9000 2000 200 42 0-45 0 710 92000 217 42 0-45 0 710 92000 217 42 0-45 0 717 9400 717 43 91 0-46 717 9400 911 43 91 0-46 717 9400 911 43 91 0-47 710 9400 911 41 91 0-21 710 9400 311 41 91 0-21 710 9400 381	1 29 81 21 21 21 37 63 21 24 21 42 21 44 21 44 10 00	4945 4 1226 1.134 4 877 12.011 9 1708 12.807 1 1901 12.177 9 1506 12.304 9 527 12.802 9 527 12.570	3988 46 363 615 1070 1013 465 401	117 030000 110 110 100 100
	107.4. LLBPICOL 109.4.4.4.4.0.0165 01.1.5.2.4.0.0165 101.5.2.4.0.0165 101.5.2.4.0.016 101.5.4.1.4.0.00 101.5.4.1.4.0.1 101.5.4.1.4.0.1 101.5.4.1.4.0.1 101.5.4.1.4.0.1 101.5.4.1.4.0.1 101.5.4.1.4.0.1 101.5.4.1.4.0.1 101.5.4.1.4.0.1 101.5.4.1.4.0.1 101.5.4.1.4.0.1 101.5.4.1.4.0.1 101.5.4.1.4.1.4.0.1 101.5.4.1.4.1.4.0.1 101.5.4.1.4.1.4.0.1 101.5.4.1.4.1.4.0.1 101.5.4.1.4.1.4.0.1 101.5.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.4.1.	DIL 3951 QUI 0.0 1.0000 2 QUI 0.0 0.0000 2 QUI 0.0 0.00000 2 QUI 0.000000 2 2	4 5 5 5 5 5 5 5 5 5 5 5 5 5	8448 01 12 545 1 521 1338 1 521 1360 3 321 1360 6 10 1239 9 61 10.195 9 121 14231 6 12 149 1 357 14231 6 321 14231 1 357 1559 3 411 3688 411 3688	4854 31 200 200 200 200 200 200 200 200 200 20	10000000000000000000000000000000000000
00.0 J	TOTAL MISCELL STORE & PROV. TOTAL STORE & F	162 34.0-251 4 3.0000 67 WVISION 67	0 95.40	0 6352 17.500 6392	1173	0
20.0	CREW EFFECT DHT CONSTANT TOTAL DEADMEIGH	34 0- 51 0 1.0000 2 -3 2-252 6 1.0000 200 T CONSTANT 212	0 34 40 122 62	0 241 20.900 25137 20.850 25370	209 4274 4463	0
0.0 A P 0 25 50 74 99 125 150 175 200 226 251 276 301 328 FR.ND	TOTAL DEADNETGHT	50815		6032087	650353	3981
FK.space : 800 mm F.P	LIGHT SHIP	15938	1 103.22	8 1031425 13 500	211175	* 30
	TOTAL MELSAR	NO.01 3	11.1	- 2066530 13 585	907740	1021

(DNV Pt.3 Ch.1 Sec. 5 A106), 2011 106 The design stillwater bending moments amidships (sagging and hogging) are normally not to be taken $M_{S} = M_{SO}$ (kNm) $M_{SO} = -0.065 C_{WU} L^2 B (C_B + 0.7) (kNm) in sagging$ $<math>= C_{WU} L^2 B (0.1225 - 0.015 C_B) (kNm) in hogging$ $C_{WU} = C_W$ for unrestricted service. Larger values of M_{SO} based on cargo and ballast conditions shall be applied when relevant, see 102. For ships with arrangement giving small possibilities for variation of the distribution of cargo and ballast, M_{SO} may be dispensed with as design basis.

[Example] Rule Values of Still Water Bending Moments (Ms) and Vertical Wave Bending Moment (Mw)

Calculate L_S, C_{B,SCANT}, and vertical wave bending moment at amidships (0.5L) of a ship in hogging condition for sea going condition. Dimension : $L_{OA} = 332.0 m$, $L_{BP} = 317.2 m$, $L_{EXT} = 322.85 m$, B = 43.2 m, $T_s = 14.5 m$ Δ (Displacement (ton) at T_s) = 140,960 ton (Sol.) $L_s = 0.97 \times L_{EXT} = 0.97 \times 322.85 = 313.16$ $M_s = M_{so}(kNm)$ $C_{B,SCANT} = \Delta / (1.025 \times L_s \times B \times T_s) = \frac{140,906}{1.025 \times 313.16 \times 43.2 \times 14.5} = 0.701 \begin{bmatrix} M_{SO} = -0.065C_{WU} L^2 B(C_B + 0.7), \text{ (in sugging)} \\ M_{SO} = -0.065C_{WU} L^2 B(0.1225 - 0.015C_n), \text{ (in sugging)} \end{bmatrix}$ $= C_{WU}L^2B(0.1225 - 0.015C_B),$ (inhogging $M_{_W} = M_{_{WO}}$ (kNm) $\alpha = 1.0$, for sea going condition, $M_{WO} = -0.11\alpha C_W L^2 B(C_B + 0.7), \text{ (insagging)}$ $C_w = 10.75$, if $300 \le L \le 350$ (wave coefficient) $= 0.19 \alpha C_W L^2 B C_B, \text{ (inhogging)}$ $k_{wm} = 1.0$ between 0.4L and 0.65 L from A.P(=0.0) and F.P $M_{WO} = 0.19 \times \alpha \times C_{W} \times L^{2} \times B \times C_{B,SCANT} (kNm)$ $= 0.19 \times 1.0 \times 10.75 \times 313.16^2 \times 43.2 \times 0.701 = 6,066,303 (kNm)$ at 0.5L, $k_{wm} = 1.0$ $M_W = 1.0 \times M_{WO}$ So, $M_W = 1.0 \times M_{WO} = 6,066,303 (kNm)$) DSME, Ship Structural Design, 5-2 Load on Hull structure, Example 4, 2005 sydlab 40 vative Ship and Offshore Plant Design, Spring 2017, Myung-II Roh

Example of N - Midship Sca	/lidshi antlin	ip So g fo	cant or 3,7	ling 700 T	EU C	ontainer	Ship	
Calculation of m Area, neutral axis, 1 ^s	oment	of ine	ertia d mome	of section	onal a	rea from ne	eutral axis t of inertia of side	structu
	Structure	Area	Neutral axis	1st moment of area about baseline	2nd moment of area about baseline	Moment of inertia of area		5110113.
	Bottom	7,519	79	5.906E+05	8.755E+08	2.627E+07		
	Side	3,135	1,158	3.630E+06	4.203E+09	1.261E+06		
	Bulkhead	5,273	1,250	6.592E+06	8.242E+09	2.472E+08		
	Deck	2,200	2,130	5.015E+06	1.208E+10	3.624E+08		
		10.1		1 5005	0.0400	2 0005 .00		
	6 h.	$=\frac{1.58}{18,1}$	$\frac{3e^{07}}{127} = 8$	873.2[<i>cm</i>]			
woment or inertia o	r area abo	but nei	utral ax	as or mic	aship sec	tion:		
$I_{Base,Total} = I_{N.A.,Total} +$	$\overline{h}^2 \sum A_i \square$			$_{otal} = I_{Base}$	$T_{Total} - \overline{h}^2$	$\sum A_i$		
(Parallel-axis theo	orem)			$=\sum_{i=1}^{n}$	$I_{Local,i} + A$	$(h_i^2) - \overline{h}^2 \sum A_i$	$I_{Base,Total} = \sum \Big(I_{Local,i} \Big)$	$+A_i h_i^2$
: moment of inertia of midship section	area about neutra	al axis (cm ³)		$- \sum_{i}$	Local ,i	$A_i n_i - n \sum A_i$		
me : moment of inertia of midship section	area about base l	ine (cm ³)		-(76	$20e^{08} \pm 2$	$540e^{10} = 873.2$	$2 \times 18 127 - 1 234 e^{10}$	$[cm^4]$
: vertical center of structural member (cn	1)			-(7.0	206 + 2	J-075.2	~10,127 - 1.2340	
: area of structural member (cm)								
-							4114	
ovative Ship and Offshore Plant Desig	n Spring 2017	Myung-II R	20h				7yg	, au

(DNV Pt. 3 Ch. 1 Sec. 4 A201, 202), 2011 A 200 Definitions 201 Symbols: = design pressure in kN/m^2 р = density of liquid or stowage rate of dry cargo in t/m^3 . ρ 202 The load point for which the design pressure shall be calculated is defined for various strength members as follows: a) For plates: midpoint of horizontally stiffened plate field. Half of the stiffener spacing above the lower support of vertically stiffened plate field, or at lower edge of plate when the thickness is changed within the plate field. b) For stiffeners: midpoint of span. When the pressure is not varied linearly over the span the design pressure shall be taken as the greater of: p_m and $\frac{p_a + p_b}{2}$ $\mathbf{p}_m, \mathbf{p}_a$ and \mathbf{p}_b are calculated pressure at the midpoint and at each end respectively. c) For girders: midpoint of load area. sydlab 127 tive Ship and Offshore Plant Design, Spring 2017, Myung-II Roh

ec or	tic Sl	onal nip E	Pro Builo	pert ding	ies (¹⁾ (1	of St /12)	eel	Se	ectio	ons						
<sec< th=""><th>tio</th><th>nal pro</th><th>pertie</th><th>s of ste</th><th>el sect</th><th>ions <mark>inc</mark></th><th>ludin</th><th>g at</th><th>tached</th><th>plate:</th><th>^{) "조}</th><th>선설계편람</th><th>", 제 4판</th><th>(일본어), 일</th><th>본관서조신</th><th></th></sec<>	tio	nal pro	pertie	s of ste	el sect	ions <mark>inc</mark>	ludin	g at	tached	plate:	^{) "조}	선설계편람	", 제 4판	(일본어), 일	본관서조신	
(Bas	e p	late dir	nensio	n:b _p >	(t _p = 4	420 x 8)										
<			<u>≯√^t</u> p	$b_p = breacter t_p = thick$	adth of p kness of	late (mm) plate (mm)	d	tw	16	19	22	25.4	28	32	35	38
	→	<mark>≮_</mark>	d	A = Area inc Z = Section (cm ³) I = Moment	luding plate modulus inc of inertia of	(cm²) :luding plate f area	200	A Z I	32.0 215 3900	38.0 259 4730	44.0 305 5600	50.8 359 6640	56.0 401 7460	64.0 469 8790	70.0 521 9830	76.0 576 10900
d	tw	6	9	11	12.7	14	250	A Z	40.0 325 7120	47.5 390 8600	55.0 458 10100	63.5 536 11900	70.0 597 13400	80.0 694 15600	87.5 769 17400	95.0 845 19200
50	A Z I	3.00 6.05 31.2	4.5 8.81 44.5	5.50 10.6 53.0	6.35 12.1 59.7	7.00 13.3 75.2	300	A	48.0	57.0 546	66.0 639	76.2	84.0 829	96.0	105.0	114.0
65	A Z	3.90 9.55 62.3	5.85 14.0 88.8	7.15 16.8 105	8.26 19.3 119	9.10 21.1 129		Ī	11700	14000	16500	19300	21600	25100	27800	30700
75	A Z	4.50 12.3	6.75 18.1	8.25 21.8	9.53 25.0	10.5 27.3	350	Z	606 17700	726 21200	847 24800	988 29100	1100 32400	1270 37600	1400 41600	1530 45700
90	A Z I	5.40 17.2 150	8.10 25.3 214	9.90 30.5 252	174 11.4 34.8 284	12.6 38.0 307	400	A Z I	64.0 776 25300	76.0 928 30300	88.0 1080 35400	101.6 1260 41400	112.0 1400 46000	128.0 1610 53300	140.0 1780 58900	152.0 1940 64600
100	A Z I	6.00 20.9 200	9.00 30.6 284	11.0 37.0 335	12.7 42.2 376	14.0 46.1 407	450	A Z I	72.0 965 34700	85.5 1150 41500	99.0 1340 48500	114.3 1560 56500	126.0 1730 62800	144.02 2000 72600	157.5 2200 80100	171.0 2400 87700
125	A Z I	7.50 31.7 370	11.3 46.4 521	13.8 55.8 612	15.9 63.6 685	17.5 69.5 738	500	A Z	80.0 1170	95.0 1400	110.0 1630	127.0 18907	140.0 2100	160.0 2420	175.0 2660	190.0 2900
150	A Z I	9.00 44.7 614	13.5 65.2 856	16.5 78.3 1000	19.1 89.1 1120	21.0 97.2 1200		 A = 4	46000 2*0.8 +	55000 15*1.4	64200 = 21 [cn	4700 n ²]	82900	95700	10500	11500
						k	\prec	Z _{Top} =	= 349.6 [cm ³]						16

Sect for S	ional Pro Ship Build al properties of st	pertiding ¹	ies) (2	of S /12 ^{uding a}	tee)	l Se	ctior	1) 1)	"조선설계편림	", 제 4판 (일본어), 일본관서조선협회, 1996
- Ose the			ate de	Dimo	J OII a	(D _p ×	L _p) => (d≤/	420×0]
	Symbol	-	Ь	+	+	r	r	Aiea	Including	7	
		a	0	<u> 4</u> m	m ^{c2}	1	12	cm ²	cm ⁴	2 cm ³	
	5 1 1										
	Equal angle				_ L				L	_	
		50		6		6.5	4.5	5.64			
		65		6		8.5	4	7.53			
		65		8		8.5	6	9.76			
		75		6		8.5	4	8.73			
		75		9		8.5	6	12.69	90.1	18.7	b _n i
		75		12		8.5	6	16.56	191	31.9	♦
	11	90		10		10	7	17.00	229	39.7	↑ t.,
		90		13		10	/	21./1	284	42.5	
		100		10		10	/	19.00	369	58.2	
	l_2 r_2	100		13		10		24.31	433	71.6	
	a	130		42		12	0	11.74	767	96.0	a
		130		12		12	8.5 9 E	19.76	905	117	r, te r.
		150		10		14	0.5	30.73	1030	119	
		150		15		14	10	42.77	1220	147	- <u>h</u>
		150		19		14	10	53 38			
		200		20		17	12	76.00			
		200		25		17	12	93.75			
		200		29		17	12	107.6			
	Una surel a series								-	-	
	Unequal angle					L			L	-	
	TTY ^{f2}	100	75	7		10	5	11.87	674	72.5	
	-• t;=-	100	75	10]	10	7	16.50	860	96.2	
	à	125	75	7	.,	10	5	13.62	110	97.2	
	r1 t2 r2	125	75	10		10	7	19.00	1420	130	
	+ <u></u> b	150	90	9	1	12	6	20.94	2490	181	162
		100	- 40	14		14	0.5	27.30	000	- 430-	

Sectional for Ship I	Prop Build	perti ing ¹	ies () (3	of S /12)	teel	Sect	ions	¹⁾ "조선설	[계편람", 저	4판 (일본어), 일본관서조선협회, 1996
<sectional propert<="" th=""><th>ies of ste</th><th>el sectio</th><th>ons <u>incl</u></th><th>uding a</th><th>ttached</th><th><u>plate</u>></th><th></th><th></th><th></th><th></th></sectional>	ies of ste	el sectio	ons <u>incl</u>	uding a	ttached	<u>plate</u> >				
- Use the standard	dimensi	on of pl	ate dep	pending	on "a"	$(b_p \times t_p) =$	⇒ (a≤75:4	20×8, 75<	a<150:6	10×10, 150≤a : 610×15)
			Dime	ension			Area	Including	g plate	þ _e i
Symbol	а	b	t ₁	t ₂	r ₁	r ₂	A	1	Z	
Unit			m	ım			cm ²	cm4	cm ³	t _p
Unequal angle	L							۲	Γ	
	200	90	9	14	14	7.0	29.66	5870	340	
	250	90	10	15	17	8.5	37.47	10300	494	a
	250	90	12	16	17	8.5	42.95	11000	540	th
+ b +	300	90	11	16	19	9.5	46.22	16400	681	
	300	90	13	17	19	9.5	52.67	17600	743	*
a'	400	100	11.5	16	24	12	61.09	34200	1120	b+
	400	100	13	18	24	12	68.59	36700	1230	
1 <u> </u>	450	125	11.5	18	24	12	73.11	51200	15/0	
	450	150	11.5	10	24	12	/3.45	31/00	1090	b ,
	500	150	12	21	24	12	05.0	02200	2020	, Te →
	600	150	12 5	23	24	12	107.6	118000	3000	t.
Channels				E						
	150	75	6.5	10	10	5	23.71	2160	154	- 95°
	200	90	8	13.5	14	7	38.65	5650	322	
95°	250	90	9	13	14	7	44.07	9420	439	a (b-11)/2, (b-11)/2
	250	90	11	14.5	17	8.5	51.17	10500	499	
t (b-11)/2 (b-11)/2	300	90	9	13	14	7	48.57	14300	567	
	300	90	10	15.5	19	9.5	55.74	16000	646	
	300	90	12	16	19	9.5	61.90	16900	693	
	380	100	10.5	16	18	9	69.39	29900	989	Ь
	380	100	13	20	24	12	85.71	34900	1190	
Bulb flats				<u>ا</u>				T T		
- 6	180	32.5	9.5	-	7	2	21.06	2860	172	
il.	200	36.5	10	-	8	2	25.23	4160	231	
15.	230	41	11	-	9	2	31.98	6610	330	100
··	250	45	12	-	10	2	38.13	8960	424	103

Sectional Properties of Steel Sections ^{1) • 조선설계면함*, 제 4판 (일본어), 일본관서조선협회, 1996}						
for Ship Building ¹⁾ (4/12)						
<sectional including<="" of="" properties="" sections="" steel="" th=""><th>attached plate></th></sectional>	attached plate>					
(Base plate dimension: $b_p \ge t_p = 610 \ge 15$)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
	300 A 50-5 54-5 58-5 63-0 67-5 72-6 × 2 775 860 1000 1130 1250 1390 116 / 1940 23400 23800 23800 23900 3100					
	50 A 56-3 60-3 64-3 66-8 73-3 78-4 × Z 955 1099 1220 1366 1500 1660 115 / J 2700 3000 3090 3400 39300 42700					
	400 4 62-0 66-0 70-0 74-5 79-0 84-1 - Lw d Unit: mm × Z 1150 1300 450 610 1770 1990 11s / J 3506 4200 4200 4300 55100					
	450 A 67-8 71-6 75-8 80-3 84-8 89-9 × Z 1350 1520 1690 1870 2030 2250 11-5 Z 14760 5220 5506 1530 6530 1530 1					
	500 A 73-5 77-5 81-5 86-6 90-5 95-6 × 2 1570 1760 1340 2146 2246 2546 4 11-5 7 64040 6590 17100 1340 2146 2246 2560 A; Sectional area (cm ²)					
	A Section area including plate (cm ³) 500 4 82-0 86-0 90-0 91-5 90-0 10-1 Z: Section modulus including plate (cm ³) 2 1840 7040 2240 2440 2440 2340 2340 2340 2340 2					
	600 4 92-2 99-2 100-3 104-7 100-6 14-3 121-9 127-0 132-8 140-2 140-8 156-7 163-6 × 2 2150 2370 2390 2580 3500 3310 3720 3920 4500 4500 1570 5510 550 15500 127 7 1 9530 103001 10001 10001 10001 10001 10001 10000 100001 10000 100001 10000					
	600 A 98-6 102-6 102-6 101-1 115-6 120-7 128-3 133-4 138-6 146-6 136-2 168-1 170-0 × 2 2430 2660 2890 3140 3390 8870 4110 4400 4690 5130 5570 6556 6420 127.7 [1500] 2390011001 41000 12900 159001 17000 159000 17000 21400 22400 22400					
	700 Å 104-9 109-9 112-9 117-4 121-9 127-0 134-6 139-7 144-9 152-9 142-5 159-4 176-3 × 2 17720 2940 3320 3480 3720 4590 4520 4530 5440 5140 5140 5190 5200 27200 2500 2500 2500 2500 2500 25					
	700 / 18-0 132-0 182-0 140-5 146-0 190-1 157-7 162-6 168-0 176-0 185-6 192-5 199-4 × 2 3070 3310 3560 3520 4770 4370 4880 5130 5480 5460 6560 7230					
	800 A 117-6 122:6 125:6 125:6 120:1 134-6 129:7 147:3 152:4 157:6 165:6 175:2 1382:1 139-0 7 13200 8310 1390 4300 1390 1390 1390 1390 1390 1390 1390 1					
	800 Å 144-0 148-0 152-0 156-5 161-0 166-1 173-7 178-6 184-0 192-0 201-6 208-5 215-4 × 7 7766 4060 4304 4530 4530 4530 4530 4530 4530 453					
	15 / 201000 [100000 [100000 [10000 [10000 [10000 [10000 [10000 [10000 [10000 [1					
	14 / / 2390001211200021210000211200002130000 3350000 373000 393000 435000 435000 435000 455000 455000 900 // 178-0 182-0 186-0 190-5 195-0 200-1 207-7 122-8 218-0 228-0 228-0 228-0 228-0 427-5 249-4 × Z / 4880 5100 // 4500 5310 (510) 4640 7060 7440 7310 5370 5570 5570 10100					
	18 / 290000304000341000328000346000383000 399000 439000 439000 439000 439000 439000 439000 439000 439000 439000 1000 // 176-0 106-0 184-0 188-5 193-0 198-1 205-7 210-8 216-0 224-0 233-6 240-5 247-4 × Z/ 5390 5730 (570 670 4420 570 5420 570 189) 7800 7800 5820 8400 5800 10100 10000 11200					
	16 / /355000(372000)38800(47000(24400)(47100)(45000) 507000 534000) 554000 55000 1000 / 206-0 [20-0] 214-0 [28-5] 223-0 [28-1] 235-7] 240-8 [24-0] 524-0 [52-6] 263-6 [270-5] 277-4 × Z [590] 5320 [550] [550] [550] [750] [740] [740] [350]					

or Sl	hip Buildin	g ¹⁾ (5/12)			
	Section shape	A	/	Z _e	Z _P	
	$\frac{1}{\frac{d_1}{d_1}} + \frac{1}{r_m} + \frac{1}{r_{r_m}} + \frac{1}{r_{r_m}}$	$\frac{\frac{1}{2}\pi(r_1^2-r_1^2)}{t/r_m\dot{z}(1)\dot{z}\dot{z}\dot{z}\dot{z}\dot{z}\dot{z}\dot{z}\dot{z}\dot{z}\dot{z}$	$ \begin{pmatrix} \frac{\pi}{8} - \frac{8}{9\pi} \end{pmatrix} (\mathbf{r}_1 \cdot - \mathbf{r}_1 \cdot) - \frac{8\mathbf{r}_1^* \mathbf{r}_1^* (\mathbf{r}_1 - \mathbf{r}_1)}{9\pi (\mathbf{r}_1 + \mathbf{r}_1)} I_{\mathbf{r}m} = \left(\frac{\pi}{2} - \frac{4}{\pi}\right) \mathbf{r}_m^3 t \approx 0.2976 \mathbf{r}_m^3 t $	$\begin{aligned} \epsilon_1 &= r_1 - \epsilon_2 \\ \epsilon_1 &= \frac{4(r_1 t + r_1 r_1 + r_1)}{3\pi(r_1 + r_1)} \\ \epsilon_{1rm} &= \frac{2}{\pi} r_m \approx 0.6366 r_m \end{aligned}$	$2[2(r_{1}^{3}\sin^{3}\theta_{1} - r_{1}^{3}\sin^{3}\theta_{1}) - (r_{2}^{3} - r_{1}^{3})]/3$ $\subset \subset U_{*},$ $r_{1}\cos\theta_{1} - r_{2}\cos\theta_{2}$	
	12. e ₁ A B	$\frac{1}{2}r^{2}(2\alpha-\sin 2\alpha)$	$I_{s} = r^{s} \Big[\frac{1}{16} (4\alpha - \sin \alpha)$ $I_{s} = \frac{r^{s}}{12} \Big[3\alpha - 2\sin 2\alpha$ $e_{1} = r \Big(1 - \frac{4\sin \alpha}{6\alpha - 3}, \frac{e_{1}}{6\alpha - 3}, \frac{4\sin^{2}\alpha}{6\alpha - 3}, \frac{e_{1}}{6\alpha - 3}, \frac{1}{6\alpha - 3}, \frac{1}{6\alpha - 3}, \frac{1}{6\alpha - 3}, \frac{1}{3\alpha - 2} \Big]$	$\begin{aligned} & 4\alpha) - \frac{8\sin^4\alpha}{9(2\alpha - \sin 2\alpha)} \end{bmatrix} \\ & \alpha + \frac{1}{4}\sin 4\alpha \end{bmatrix} \\ & \frac{1}{2\alpha} \\ & \frac{1}{2\alpha} \\ & \frac{1}{2\alpha} - \cos(\alpha) \end{aligned}$	$\frac{\frac{2}{3}r^{3}(2\sin^{3}\alpha_{1}-\sin^{3}\alpha)}{2c-ic}$ $\frac{2\alpha-\sin 2\alpha}{2\alpha_{2}-\sin 2\alpha_{1}}=4$	
	$\begin{bmatrix} 13\\ e_1\\ e_2\\ e_3\\ B \end{bmatrix} = \begin{bmatrix} B\\ A\\ B\\ B\\ B \end{bmatrix}$	2art	$I_{A} = r^{2} I(\alpha + \sin\alpha \cos\alpha)$ $= 2 \frac{\sin^{2}\alpha}{\alpha} $ $I_{A} - r^{2} I(\alpha - \sin\alpha \cos\alpha)$	$e_1 = r\left(1 - \frac{\sin\alpha}{\alpha}\right)$ $e_2 = r\left(\frac{\sin\alpha}{\alpha} - \cos\alpha\right)$	$\frac{2rt(r-t/2)}{\times (2\sin\frac{\alpha}{2} - \sin\alpha)}$	
	14. erter B B	ar ¹	$I_{A} = \frac{1}{4} r^{4} (\alpha + \sin \alpha \cos \alpha)$ $- \frac{16 \sin^{4} \alpha}{9 \alpha})$ $I_{B} = \frac{1}{4} r^{4} (\alpha - \sin \alpha \cos \alpha)$	$\epsilon_1 = r \left(1 - \frac{2 \sin \alpha}{3\alpha} \right)$ $\epsilon_2 = r \frac{2 \sin \alpha}{3\alpha}$	$\alpha > 0.950,$ $(2\alpha' - \sin 2\alpha' = \alpha)$ $2r^{3}(2\sin \alpha' - \sin \alpha)/3$ $\alpha < 0.996$ $\frac{2r^{3}}{3} \left[\sin \alpha - \sqrt{\frac{\alpha^{3}}{2\tan \alpha}} \right]$	
	15. 精	πab	$\frac{\pi}{4}a^{i}b=0.7854a^{i}b$	π/4 a²b≔0•7854 a²b	$\frac{4}{3}a^{2}b$	

Section shape	А	/	Z _e	Z_P
	π(a,b1-a,b1) t/an, t/bn か; 小さいとき An=π(an+bn)t	$\frac{\pi}{4}(a_1b_1-a_1b_1)$ $I_m = \frac{\pi}{4}a_m^3(a_m+3b_m)t$	$\frac{\pi}{4} \frac{a_1 b_1 - a_1 b_1}{a_1}$ $Z_m = \frac{\pi}{4} a_m (a_m + 3b_m)!$	$\frac{4}{3}(a_1^{ib_1}-a_1^{ib_1})$
17. 半相円	<u>1</u> жад	$\left(\frac{\pi}{8} - \frac{8}{9\pi}\right)a^{3}b$ $= 0.1098 a^{3}b$	$e_1 = \left(1 - \frac{4}{3\pi}\right)a = 0.5756a$ $Z_1 = 0.1908 a^{2}b$ $e_1 = \frac{4r}{3\pi} = 0.4244 a$ $Z_1 = 0.2587 a^{2}b$	⇔0·35362 a²b
$ \begin{array}{c c} 18 & B \\ h & A & A \\ h & h_1 \\ h \\ h \\ h \\ h_1 \\ h$	$2bt_2 + h_1t_1$	$I_{A} = \frac{bh^{3} - (b - t_{1})h^{3}}{12}$ $I_{B} = \frac{2b^{3}t_{1} + h_{1}t_{3}^{3}}{12}$	$Z_{s} = \frac{bh^{3} - (b - t_{1})h^{3}}{6h}$ $Z_{s} = \frac{2b^{3}t_{s} + h_{1}t_{1}^{3}}{6b}$	$\frac{h_{1}^{1}t_{1}}{4} + \frac{ht_{2}}{2}(h+h_{1})$
$\begin{array}{c} 19. e_2 \\ B \\ h \\ h \\ t_1 \\ t_2 \\ B \\ h \\ h \\ h_1 \\ t_2 \\ h_2 \\ h_1 \\ h_1 \\ h_2 \\ h_1 \\ h_2 \\ h_1 \\ h_1 \\ h_2 \\ h_2 \\ h_2 \\ h_1 \\ h_2 \\ h_2 \\ h_2 \\ h_1 \\ h_2 \\ h$	$2bt_1 + h_1t_1$	$I_{A} = \frac{bh^{3} - (b - t_{1})h_{1}^{3}}{12}$ $I_{B} = \frac{2b^{3}t_{1} + h_{1}t_{1}^{3}}{3} - Ae_{1}^{3}$	$e_1 = b - e_2$ $e_2 = \frac{2b^3 t_2 + h_1 t_1^3}{4b t_2 + 2h_1 t_3}$	18.と同じ

Section shape	А	/	Z _e	Z _P
h h	ōh	$\frac{1}{12}bh^*$	$\frac{1}{6}bh^2$	$\frac{1}{4}hh^i$
$\frac{2}{h_1 + h_2}$	h_{i} : - h_{i} ?	$\frac{1}{12}(h_{1}{}^{\star}-h_{2}{}^{\star})$	$\frac{1}{6} \frac{h_2 \cdot - h_1 \cdot}{h_2}$	$\frac{1}{4} \langle h_l^{\ 3} - h_l^{\ 3} \rangle$
	h2	$\frac{1}{12}h^{\circ}$	$\frac{\sqrt{2}}{12}k^1$	$\frac{\sqrt{2}}{6}h^3$
	$h_{2}^{2} - h_{1}^{2}$	$\frac{1}{12}(h_1{}^i-h_1{}^i)$	$\frac{\sqrt{2}}{12} \frac{h_{1} \cdot - h_{1} \cdot}{h_{1}}$	$\frac{\sqrt{2}}{6}(h_{2}^{3}-h_{2}^{2})$
5. Price h	$\frac{1}{2}\delta h$	$\frac{1}{36}bh^{3}$	$\epsilon_1 = \frac{2}{3}h, Z_1 = \frac{bh^3}{24}$ $\epsilon_i = \frac{1}{3}h, Z_2 = \frac{bh^3}{12}$	$\frac{2-\sqrt{2}}{6}bh^7$

Section shape	А	/	Z _e	Z _P
6. <i>b i b b i b b b b b b b b b b</i>	$\frac{1}{2}(b_1+b_2)h$	$\frac{h^{i}(b_{1}{}^{i}+4b_{1}b_{1}+b_{1}{}^{i})}{36(b_{1}+b_{1})}$	$\begin{split} \varepsilon_{1} &= \frac{h(b_{1}+2b_{1})}{3(b_{1}+b_{1})} \\ Z_{1} &= \frac{h^{*}(b_{1}^{*}+4b_{1}b_{2}+b_{1}^{*})}{12(b_{1}+2b_{1})} \\ \varepsilon_{2} &= \frac{h(2b_{1}+b_{1})}{3(b_{1}+b_{1})} \\ Z_{1} &= \frac{h^{*}(b_{1}^{*}+4b_{1}b_{2}+b_{1}^{*})}{12(2b_{1}+b_{1})} \end{split}$	$\frac{Ah}{3} \frac{(b_1b_2 + b_2b_3 + b_2b_1)}{(b_1 + b_2)(b_1 + b_3)}$ $ \leq \zeta \leq \zeta,$ $b_3^2 = (b_1^2 + b_2^2)/2$
7. 正 n 角形 A A F z F z F z F z F z	$\frac{1}{2}$ nar ₁	$\frac{A}{24}(6 r_1^2 - a^2) = \frac{A}{48}(12 r_1^2 + a^2)$	$Z_{a} = \frac{A}{48 r_{1}} (12 r_{1}^{2} + a^{2})$ $Z_{b} = \frac{A}{24 r_{2}} (6 r_{2}^{2} - a^{2})$	$n: \bigoplus_{r=1}^{\infty} \mathbb{K}, Z_{P,4} = \frac{a^2 r_1}{6} + \frac{2}{3} a r_1^2 \sum_{n=1}^{\frac{n}{2} - 1} \sin \frac{2k\pi}{n}$
8. d	$\frac{1}{4}\pi d^2$	$\frac{1}{64}\pi d^4$	$\frac{1}{32}\pi d^3$	$\frac{1}{6}d^3$
9. $d_m - t$	$\frac{\frac{1}{4}\pi(d_2^{i}-d_1^{i})}{t/d_mb^{i}}$ $\frac{1}{4}\pi(d_2^{i}-d_1^{i})$ t/d_mb^{i} $A_{dm}=\pi d_m t$	$\frac{1}{64}\pi(d_{1}^{4}-d_{1}^{4})$ $I_{4m}=\frac{1}{8}\pi d_{m}^{3}t$	$\frac{\pi}{32} \frac{d_2^{i} - d_1^{i}}{d_2}$ $Z_{dm} = \frac{1}{4} \pi d_m^{i} t$	$\frac{1}{6}(d_1^3 - d_1^3)$
$ \begin{array}{c} 0 \\ e_1 \\ e_2 \\ e_2 \end{array} \right _{r-r-r} r $	$\frac{1}{2}\pi r^2$	$\left(\frac{\pi}{8} - \frac{8}{9\pi}\right)r^4$ $= 0.1098 r^4$	$e_1 = \left(1 - \frac{4}{3\pi}\right)r = 0.5756r$ $Z_1 = 0.1908 r^3$ $e_2 = \frac{4r}{3\pi} = 0.4244 r$: 0·37982 r ³

Section shape	Α	/	Z _e	Zp
$\begin{array}{c} 20, \qquad \qquad$	$bt_2 + h_1t_1$	$I_{d} = \frac{h^{3}t_{1} + (b - t_{1})t_{1}^{3}}{3} - Ae^{3}$ $I_{\theta} = \frac{h^{3}t_{2} + h_{1}t_{1}^{2}}{12}$	$\begin{split} e_{1} &= \frac{h^{2}t_{1} + (b - t_{1})t_{2}^{+}}{2(bt_{2} + h_{3}t_{1})} \\ e_{2} &= h - e_{1} \end{split}$	$\begin{split} t_1 &\leq h, t_1 \neq b \not \cap \geq \vartheta \\ & \frac{bt_1}{2} \left(h - \frac{t_1}{t_1}b\right) \\ & + \frac{h_1 t_1}{4} \left[h_1 + \left(\frac{t_1}{t_1}\right)^2 \\ & \times \left(\frac{h_1}{h_1}\right)b\right] \\ & t_1 > h, t_1 \neq b \not O \geq \vartheta \\ & \frac{bt_1^*}{4} \left[1 - \left(\frac{h_1 t_1}{bt_1}\right)^2\right] \\ & + \frac{h_1 t_1}{2} \end{split}$
21. t h h h h h h h h	$(h+h_1)t$	$\frac{t}{3}(h^3+h_1t^2)-A\epsilon_2^2$	$e_1 = h - e_2$ $e_3 = \frac{h^2 + h_1 t}{2(h + h_1)}$	$\frac{t}{4}[(h\!-\!t)^2\!+\!h^2]$
$\frac{22}{e_{1}} \xrightarrow{B} h_{A}$	$(h+h_1)t$	$I_{4} = \frac{(h+1)^{4}}{24} - \frac{h_{1}^{4} + 2t^{4}}{24}$ $-Ae_{2}^{3}$ $I_{8} = \frac{1}{12}(h^{4} - h_{1}^{4})$	$e_1 = \frac{h^2 + h_1 t}{\sqrt{2(h+h_1)}}$ $e_2 = \frac{h^2}{\sqrt{2}(h+h_1)}$	$\frac{l}{\sqrt{2}}[h(h-t)+t^{2}]$
23. 1	$bt_2 + h_1t_1$	$\frac{h^{3}t_{1}+(b-t_{1})t_{2}^{2}}{3}-Ae_{2}^{2}$	$e_1 = h - e_2$ $e_2 = \frac{h^2 t_1 + (b - t_1) t_2^2}{2(b t_2 + h_1 t_1)}$	20. と同じ

Section shape	A	/	Z _e	Z _P
$\begin{array}{c} 24. \\ \hline \\ \hline \\ e_2 \\$	$b_s t_0 + b t_1 + h_1 t_1$	$I = \frac{b_{a}t_{a}^{2}}{3} + \frac{bh^{2}}{3} - \frac{(b)}{(b-t_{a})^{2}}$ $e_{1} = t_{a} + \frac{bh^{2} - (b-t_{a})}{4}$ $e_{2} = h - \frac{bh^{2} - (b-t_{a})h}{2A}$	$\frac{-t_1)h_1^3}{3} - A(a_1 - t_2)^2 \\ \frac{h_1^2 - b_2 t_2^2}{b_1^2 - b_2 t_2^2} \\ \frac{h_1^2 - b_2 t_2^2}{b_1^2 - b_2 t_2^2}$	$\begin{split} t_{t} &\leq (bt_{1}+h,t_{1})/b_{0} \otimes \mathcal{E} \\ & \frac{b_{1}t_{2}}{2} (h_{1}+t_{4}) + \frac{bt_{1}h}{2} \\ & + \frac{h_{1}^{2}t_{1}}{4} - \frac{1}{4t_{1}} \\ & \times (bt_{1}-b_{6}t_{5})^{2} \\ t_{6} &\geq (bt_{7}+h,t_{1})/b_{9} \otimes \mathcal{E} \\ & \frac{b_{6}t_{9}^{2}}{4} - \frac{1}{4b_{9}} (bt_{2}+h,t_{1}) \\ & + \frac{(h_{1}+t_{9})(h_{1}t_{1}+bt_{2})}{2} \\ \end{split}$
	<i>t</i> (<i>a</i> + <i>b</i>)	$\frac{td^2}{12}(3a+b)$	$\frac{td}{6}(3a+b)$	$\frac{adt}{2} + \frac{bdt}{4}$
	$at\left(1+\frac{\pi}{2}\right)+2 bt$ =2.5708 at +2 bt	$\frac{a^{3}t}{12}\left(1+\frac{3}{4}\pi\right)+\frac{1}{2}a^{3}bt \\ = 0.2797a^{3}t+0.5a^{3}bt$	$\frac{a^2t}{6}\left(1+\frac{3}{4}\pi\right)+abt$ $= 0.5594a^2t+abt$	$\frac{3}{4}a^2t + abt + \frac{t^3}{6}$

Section shape and distribution of shear force	$\tau_{r} = \frac{F}{z \cdot I} \int_{-\infty}^{t} zy dy$	$\tau_{rmax} = \frac{\alpha F}{A}$
	$\frac{3}{2} \cdot \frac{F}{bh} \left\{ 1 - \left(\frac{2y_1}{h}\right)^2 \right\}$	$\frac{3}{2} \cdot \frac{F}{bh} = \frac{3}{2} \cdot \frac{F}{A}$
	$\sqrt{2}\frac{F}{a^{t}}\left\{1+\sqrt{2}\frac{y_{1}}{a}-4\left(\frac{y_{1}}{a}\right)^{t}\right\}$	$\frac{9}{8}\sqrt{2}\frac{F}{d^3}=1.591\frac{F}{A}$
3	$\frac{4}{3} \cdot \frac{F}{\pi r^{i}} \left\{ 1 - \left(\frac{y_{i}}{r}\right)^{i} \right\}$	$\frac{4}{3} \cdot \frac{F}{\pi r^2} = \frac{4}{3} \cdot \frac{F}{A}$
	$\frac{F}{\pi r t} \Big\{ 1 - \Big(\frac{y_1}{r}\Big)^2 \Big\}$	$\frac{F}{\pi rt} = 2\frac{F}{A}$
5.	$\frac{4}{3} \cdot \frac{F}{\pi ab} \left\{ 1 - \left(\frac{y_i}{a}\right)^2 \right\}$	$\frac{4}{3} \cdot \frac{F}{\pi d \delta} = \frac{4}{3} \cdot \frac{F}{A}$

Sectional Properties for Ship Building ¹⁾ (of Steel Sections	¹⁾ "조선설계편람", 제 4판 (일본어), 일본관서조선협회, 19
	$\begin{split} & \frac{h_1}{2} \ge y_1 \ge \frac{h_1}{2}; \\ & \frac{3F}{2(b_1 h_1^{-1} - b_1 h_1^{-1})} (h_2^{-1} - 4y_1^{-1}) \\ & \frac{h_1}{2} \ge y_1 \ge 0; \\ & \frac{3F}{2(b_1 h_1^{-1} - b_1 h_1^{-1})} \left(\frac{b_2 h_2^{-1} - b_2 h_1^{-1}}{b_2 - b_1} - 4y_1^{-1} \right) \end{split}$	$\frac{\frac{3(b_{j}h_{1}^{1}-b_{j}h_{1}^{1})F}{2(b_{j}h_{1}^{1}-b_{j}h_{1}^{1})(b_{2}-b_{1})}}{\frac{-3(b_{j}h_{1}^{1}-b_{j}h_{1}^{1})(b_{2}h_{2}-b_{j}h_{1})}{2(b_{j}h_{1}^{2}-b_{j}h_{1}^{1})(b_{2}-b_{1})}\cdot\frac{F}{A}$
7. 2r1 2r2	$r_{1} \ge y_{1} \ge r_{1};$ $\frac{4F}{3\pi(r_{1}^{*} - r_{1}^{*})} (r_{1}^{2} - y_{1}^{2})$ $r_{1} \ge y_{1} \ge 0;$ $\frac{4F}{3\pi(r_{2}^{*} - r_{1}^{*})} \{r_{2}^{2} + r_{1}^{2} - 2y_{1}^{2}$ $+ \sqrt{(r_{2}^{2} - y_{1}^{2})(r_{1}^{2} - y_{1}^{2})}\}$	$\frac{4(r_1^{i}+r_1r_1+r_1^{i})F}{3\pi(r_1^{i}-r_1^{i})} = \frac{4(r_1^{i}+r_1r_1+r_1^{i})}{3(r_1^{i}+r_1^{i})} \cdot \frac{F}{A}$
8. 2 <i>a</i> ₂ <i>b</i> 2 <i>b</i> ₁ - <i>b</i> <i>c</i> 2 <i>b</i> ₂ - <i>b</i>	$ \begin{aligned} a_{1} \geq y_{1} \geq a_{1}; \\ \frac{4F}{3\pi(a_{1}b_{1}-a_{1}b_{1})}(a_{1}^{2}-y_{1}^{2}) \\ a_{1} \geq y_{1} \geq 0; \\ \frac{4F}{3\pi(a_{1}b_{2}-a_{1}b_{2})} \\ \frac{b_{1}}{a_{1}(a_{1}^{2}-y_{1})^{\frac{3}{2}} - \frac{b_{1}}{a_{1}(a_{1}^{2}-y_{1})^{\frac{3}{2}}}} \\ \times \frac{b_{1}}{a_{1}(a_{2}^{2}-y_{1})^{\frac{3}{2}} - \frac{b_{1}}{a_{1}(a_{1}^{2}-y_{1})^{\frac{3}{2}}}} \\ \times \frac{b_{1}}{a_{1}(a_{2}^{2}-y_{1})^{\frac{3}{2}} - \frac{b_{1}}{a_{1}(a_{1}^{2}-y_{1})^{\frac{3}{2}}}} \end{aligned} $	$\frac{\frac{4(a_1b_1-a_1b_1)F}{3\pi(a_1b_2-a_1b_1)(b_2-b_1)}}{=\frac{4(a_1b_2-a_1b_1)(a_2b_2-a_2b_1)}{3(a_1b_2-a_1b_1)(b_2-b_1)}\cdot\frac{F}{A}$

(DNV Pt. 3 Ch. 1 Sec. 13, B100, B102, B103), 2011

B 100 General

101 Local plate panels between stiffeners may be subject to uni-axial or bi-axial compressive stresses, in some cases also combined with shear stresses. Methods for calculating the critical buckling stresses for the various load combinations are given below.

102 Formulae are given for calculating the ideal compressive buckling stress $\sigma_{\alpha'}$. From this stress the critical buckling stress σ_c may be determined as follows:

$$\sigma_{\rm c} = \sigma_{\rm el}$$
 when $\sigma_{\rm el} < \frac{\sigma_{\rm f}}{2}$

$$\sigma_{\mathbf{f}}\left(1 - \frac{\sigma_{\mathbf{f}}}{4\sigma_{\mathbf{e}l}}\right) \text{ when } \sigma_{\mathbf{e}l} > \frac{\sigma_{\mathbf{f}}}{2}$$

103 Formulae are given for calculating the ideal shear buckling stress $\tau_e l$. From this stress the critical buckling stress τ_c may be determined as follows:

$$\tau_{c} = \tau_{el}$$
 when $\tau_{el} < \frac{\tau_{f}}{2}$
= $\tau_{f} \left(1 - \frac{\tau_{f}}{4\tau_{r}} \right)$ when $\tau_{el} > \frac{\tau_{f}}{2}$

 $\tau_{\rm f}$ = yield stress in shear of material in N/mm²

tive Ship and Offshore Plant Design, Spring 2017, Myung-II Rob

$$=\frac{\sigma_{\rm f}}{\sqrt{3}}$$

ydlab 192

(DNV Pt. 3 Ch. 1 Sec. 13, B102, B103), 2011

102 Formulae are given for calculating the ideal compressive buckling stress σ_{el} . From this stress the critical buckling stress σ_c may be determined as follows:

$$\begin{split} \sigma_{\rm c} &= \sigma_{\rm el} \quad {\rm when} \quad \sigma_{\rm el} < \frac{\sigma_{\rm f}}{2} \\ &= \sigma_{\rm f} \Big(1 - \frac{\sigma_{\rm f}}{4 \, \sigma_{\rm el}} \Big) \quad {\rm when} \quad \sigma_{\rm el} > \frac{\sigma_{\rm f}}{2} \end{split}$$

103 Formulae are given for calculating the ideal shear buckling stress $\tau_e l$. From this stress the critical buckling stress τ_c may be determined as follows:

$$\begin{split} \tau_{\mathbf{c}} &= \tau_{\mathbf{e}l} \quad \text{when} \quad \tau_{\mathbf{e}l} < \frac{\tau_{\mathbf{f}}}{2} \\ &= \tau_{\mathbf{f}} \Big(1 - \frac{\tau_{\mathbf{f}}}{4 \tau_{\mathbf{e}l}} \Big) \quad \text{when} \quad \tau_{\mathbf{e}l} > \frac{\tau_{\mathbf{f}}}{2} \end{split}$$

 $\tau_{\rm f}$ = yield stress in shear of material in N/mm²

ative Ship and Offshore Plant Design, Spring 2017, Myung-II Roh

$$\frac{\sigma_{\rm f}}{\sqrt{3}}$$
 .

=

/ydlab 196

Table B1 Design	loads	
Structure	Load type	p (kN/m ²)
Outer bottom	Sea pressure	$p_1 = 10 T + p_{dp} (kN/m^2)^{-1}$
	Net pressure in way of cargo tank or deep tank	$\begin{split} p_2 &= \rho \left(g_0 + 0.5 \; a_v \right) h_s - 10 \; T_M \\ p_3 &= \rho \; g_0 \; h_s + p_0 - 10 \; T_M \end{split}$
Inner bottom Inner bottom, floors and girders	Dry cargo in cargo holds	$p_4 = \rho (g_0 + 0.5 a_v) H_C$
	Ballast in cargo holds	$p_{5} = (10 + 0.5a_{v})h_{s}$ $p_{6} = 6.7(h_{s} + \phi b) - 1.2\sqrt{H\phi b_{t}}^{2}$ $p_{7} = 0.67(10h_{p} + \Delta p_{dyn})$ $p_{8} = 10h_{s} + p_{0}$ $p_{9} = \rho(g_{0} + 0.5a_{v})h_{s}$ (2)
	Liquid cargo in tank above	$ p_{10} = \rho g_0 [0.67 (h_s + \phi b) - 0.12 \sqrt{H} \phi b_t] $ $ p_{11} = 0.67 (\rho g_0 h_p + \Delta p_{dyn}) $ $ p_{12} = \rho g_0 h_s + p_0 $ $ p_{13} = 0.67 (10 h_p + \Delta p_{dyn}) $
	Pressure on tank boundaries in double bottom	$p_{14} = 10 n_s + p_0$

109

	Sea pressure below summer load waterline	$p_1 = 10 h_0 + p_{dp}^{-1}$			
External	Sea pressure above summer load waterline	$p_2 = (p_{dp} - (4 + 0.2 k_s) h_0)^{1)}$ minimum 6.25 + 0.025 L ₁			
	Ballast, bunker or liquid cargo in side tanks in general	$ \begin{array}{l} p_3 = \rho \left(g_0 + 0.5 \ a_v \right) h_s - 10 \ h_b \\ p_4 = \rho \ g_0 \ h_s - 10 \ h_b + p_o \\ p_5 = 0.67 \ (\rho \ g_0 \ h_p + \Delta \ p_{dyn}) - 10 \ h_b \end{array} $			
Internal	Above the ballast waterline at ballast, bunker or liquid cargo tanks with a breadth > 0.4 B	$p_6 = \rho g_0 [0.67(h_s + \phi b) - 0.12\sqrt{H\phi b_t}]$			
	Above the ballast waterline and towards ends of tanks for ballast, bunker or liquid cargo with length $> 0.15 \text{ L}$	$\mathbf{p}_7 = \rho \mathbf{g}_0 [0.67(\mathbf{h}_{s} + \theta l) - 0.12 \sqrt{\mathbf{H}\theta l_{t}}]$			
	In tanks with no restriction on their filling height $^{2)}$	$p_8 = \rho \left[3 - \frac{B}{100} \right] b_b$			

114

Lo (L3	ngituo 38 - Si	dinals ide St	s at Si tructu	de Sł ire &	nell Pl Deck	late Stru	cture)	SP5×	2/1 = /50_EH L38 -				
✓ Side structure: $Z_1 = 148.651 \text{ cm}^3$, $t_1 = 13 \text{ mm}$ •Load point													
✓ Deck structure: $Z_2 = 94.877 \ cm^3$, $t_2 = 13 \ mm$													
✓ Side structure & Deck structure													
		$Z = \max($	$(Z_1, Z_2) =$	$Z_1 = 148$.651 cm^3	;							
$t = \max(t_1, t_2) = 13 \ mm$ " $\pm del (2E0), 2e = 13 \ mm$													
Select the longitudinal whose section modulus is larger than the required section modulus from the table. Section modulus of flange whose longitudinal involves the plate. ¹⁾													
	d	tw	6	9	11	12.7	14	I	د ک		> <u>t</u> p		
		A	9	13.5	16.5	19.1	21			1			
	150	Z	44.7	65.2	78.3	89.1	97.2						
		1	614	856	1000	1120	1200		\rightarrow	<-t _₩	d		
	d	tw/	16	10	22	25.4		32	25	38			
	u .		32	38	44	50.8	56	64	70	76			
	200	Z	215	259	305	359	401	469	521	576			
			3900	4730	5600	6640	7460	8790	9830	10900			
		1) When th in accordar	e section modulu: nce with rule shou	s is calculated, si Id be used in act	andard breadth ual calculation.	depending on a i (b _p × t _p) => (a≤7	s used for effective b 5 : 420×8, 75 <a<150< td=""><td>readth for simpli : 610×10, 150≤a</td><td>city. But effectiv a : 610×15)</td><td>e breadth</td><td>231</td></a<150<>	readth for simpli : 610×10, 150≤a	city. But effectiv a : 610×15)	e breadth	231		

121

(DNV, Pt. 3 Ch. 1 Sec. 13, C201), 2011

201 For longitudinals subject to longitudinal hull girder compressive stresses, supporting bulkhead stiffeners, pillars, cross ties, panting beams etc., the ideal elastic lateral buckling stress may be taken as:

$$\sigma_{el} = 0.001 \text{ E} \frac{I_A}{Al^2} \qquad (\text{N/mm}^2)$$

 I_A = moment of inertia in cm⁴ about the axis perpendicular to the expected direction of buckling A = cross-sectional area in cm².

When calculating I_A and A, a plate flange equal to 0.8 times the spacing is included for stiffeners. For longitudinals supporting plate panels where elastic buckling is allowed, the plate flange shall not be taken greater than the effective width, see B207 and Appendix A.

Where relevant t_k shall be subtracted from flanges and web plates when calculating I_A and A.

The critical buckling stress is found from 101.

ative Ship and Offshore Plant Design, Spring 2017, Myung-Il Roh

The formula given for $\sigma_{\rm el}$ is based on hinged ends and axial force only.

If, in special cases, it is verified that one end can be regarded as fixed, the value of σ_{el} may be multiplied by 2. If it is verified that both ends can be regarded as fixed, the value of σ_{el} may be multiplied by 4.

In case of eccentric force, additional end moments or additional lateral pressure, the strength member shall be reinforced to withstand bending stresses.

