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2017 Spring Inviscid Flow

Ideal-Fluid Flow: Introduction
o Ideal-Fluid Flow

– Incompressible
– Inviscid
– That is, the effect of inertia is dominant.
– The study of ideal-fluid flows is frequently referred to as 

hydrodynamics.

2

0

1

i

i

j j
k j

k j

u
x
u u pu f
t x xr

¶
=

¶
¶ ¶ ¶

+ = - +
¶ ¶ ¶

0
1( )

u
u u u p f
t r

Ñ× =
¶

+ ×Ñ = - Ñ +
¶

In tensor forms In vector forms

or

Governing Equations



2017 Spring Inviscid Flow

Ideal-Fluid Flow: Introduction
o Boundary conditions (B.C’s) for Euler equation

– Euler equation is one order lower than the Navier-Stokes eqn

à B.C’s for N-S equation should be relaxed for Euler eqn.

– The effects of viscosity is manifest by no-slip at solid boundary.

à the condition of no tangential slip at boundaries is dropped.
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Ideal-Fluid Flow: Introduction
o Potential Flow

– If an ideal-fluid flow around a body is irrotational,
– the flow will remain irrotational even near the body (Kelvin’s Theorem)

– Equation for velocity potential
• From the continuity equation

• We can obtain velocity fields without solving equations of motion 
(i.e., Euler equation)

• However, to get the information of pressure, we should solve 
equation of motion: e.g., Bernoulli equation
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Ideal-Fluid Flow: Introduction
• Linear equation: principle of superposition is satisfied

– If f1 and f2 are solutions of Ñ2f = 0, their linear combinations 

(e.g., af1 + bf2) are also the solutions of the equation.

o Obviously, irrotational fluids differ from real fluids in certain important 

respects —“Dry water” and “Wet water” (Richard Feynman)

o Inviscid flow solutions are still useful for modeling many flow phenomena 

but at the same time, their deficiencies help us to understand the 

importance of viscosity in real “wet” fluids.
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2D Potential Flows – Stream Function
o Velocity potential (f)

– automatically satisfies the condition of irrotationality
– solution of a Laplace equation

o A second function (y) may be defined in a complementary way
– automatically satisfies the continuity equation

– and satisfies the condition of irrotationality as well
• in two-dimensional flow
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2D Potential Flows – Stream Function

o Stream function, like the velocity potential, should satisfy Laplace 
equation.

1. Flow lines of constant y are streamlines
– (Proof)
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2D Potential Flows – Stream Function
2. Difference of values between two streamlines gives the volume of fluid 

which is flowing between these two streamlines
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2D Potential Flows – Stream Function
3. Streamlines (y = constant) and the lines of f = constant (equipotential 

lines) are orthogonal to each other
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Weir – kind of a small dam



2017 Spring Inviscid Flow

2D Potential Flows – Complex Potential/Velocity
o Complex variables theory

– Analytic Function
• A function F(z) of the complex variable z = x + iy is said to be 

analytic if the derivative dF/dz exists at a point z0 and in some 
neighborhood of z0 and if the value of dF/dz is independent of the 
direction in which it is calculated.

– Singular Points
• A singular point is any point at which F(z) is not analytic. If F(z) is 

analytic in some neighborhood of the point z0, but not at z0 itself, 
then z0 is called an isolated singular point of F(z).

– Derivative of Analytic Function
• If F(z) is analytic, then dF/dz will exist and may be calculated in any 

direction, so that
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2D Potential Flows – Complex Potential/Velocity
o The velocity components u and v may be expressed in terms of either the 

velocity potential or the stream function

o Let’s define complex potential F(z) to make it easier to analyze potential 

flow

– If F(z) is an analytic function, f and y will automatically satisfy the 

Cauchy-Riemann equations

– for every analytic function F(z), the real part is automatically a valid 

velocity potential and the imaginary part is a valid stream function
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2D Potential Flows – Complex Potential/Velocity
– First, solve Laplace equations for y and f
– Second, velocity field is obtained from the definition of y and f
– Third, pressure field is obtained from Bernoulli eqn

– Disadvantage
• inverse: first get the solution and then find the original physical 

problem (it’s ok as an educational purpose)
• can’t be generalized to three-dimensional flow

– Advantage
• Powerful
• Need not to solve complex PDEs
• Since F(z) is analytic, dF/dz is a point function (independent of the 

direction)
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2D Potential Flows – Complex Potential/Velocity
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2D Potential Flows – Complex Potential/Velocity
o Sometimes, we may need to work with cylindrical coordinates
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Uniform Flow
o (U: real number)

o

o
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Source, Sink, and Vortex Flows
o Complex potentials that correspond to the flow fields generated by 

sources, sinks, and vortices are obtained by considering F(z) to be 
proportional to ‘lnz’.

o

o Strength of a source
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Source, Sink, and Vortex Flows
o Clearly, the complex potential for a sink, which is a negative source, is 

obtained by replacing m by –m.

o

o Direction of the flow is positive (counterclockwise) for c > 0, and the 
resulting flow field is a vortex; clockwise for c < 0

o Strength of a vortex, circulation
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Source, Sink, and Vortex Flows
o The flow field for z0 = 0 is called free vortex.
o That is, for any closed contour that does not include the singularity, the 

circulation will be zero and the flow will be irrotational.
o All the circulation and vorticity associated with this type of vortex is 

concentrated at the singularity. 
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Flow in a Sector
o Flows in sharp bends or sectors are represented by complex potentials 

that are proportional to zn (n ³ 1).
o
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Flow around a Sharp Edge
o The complex potential for the flow around a sharp edge, such as the edge 

of a flat plate, is obtained from the function z1/2.
o
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Flow due to Doublet
o The function 1/z has a singularity at z = 0, and in the context of complex 

potentials, this singularity is called a doublet.
o Physically, doublet may be considered to be the coalescing of a source and 

a sink.
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Flow due to Doublet
o

o complex potential µ/z may be thought of as being the equivalent of the 
superposition of a very strong source and a very strong sink that are very 
close together. 
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Flow due to Doublet
o
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