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2017 Spring Inviscid Flow

o ldeal-Fluid Flow
— Incompressible

— Inviscid

— That is, the effect of inertia is dominant.

— The study of ideal-fluid flows is frequently referred to as
hydrodynamics.

Governing Equations

ou,
% 0 Veu=0
or
u, L ou__1ap, . S V==Vt f
o  ‘ox, pox, 7’ t P
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o Boundary conditions (B.C’s) for Euler equation
— Euler equation is one order lower than the Navier-Stokes egn
- B.C’s for N-S equation should be relaxed for Euler eqgn.
— The effects of viscosity is manifest by no-slip at solid boundary.
-> the condition of no tangential slip at boundaries is dropped.

u-n=U-n
-t

<|

unspecified

No-slip condition on a solid boundary = the surface of the body must be a streamline
How about the B.C far away from the body?

u =0 as X — oo (same as viscous flow)
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o Potential Flow
— If an ideal-fluid flow around a body is irrotational,

— the flow will remain irrotational even near the body (Kelvin’s Theorem)
w=Vxu=0 (everywhere)
VxVg=0 (¢: any scalar function)
Su=Ve (¢ : velocity potential)

— Equation for velocity potential
* From the continuity equation
V-u=V?¢=0  Laplace eqn

* We can obtain velocity fields without solving equations of motion
(i.e., Euler equation)

* However, to get the information of pressure, we should solve
equation of motion: e.g., Bernoulli equation
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* Linear equation: principle of superposition is satisfied

— If ¢, and ¢, are solutions of V2¢ = 0, their linear combinations
(e.g., ad, + bd,) are also the solutions of the equation.

o Obviously, irrotational fluids differ from real fluids in certain important
respects —“Dry water” and “Wet water” (Richard Feynman)

o Inviscid flow solutions are still useful for modeling many flow phenomena
but at the same time, their deficiencies help us to understand the
importance of viscosity in real “wet” fluids.

\ ’- Entrance region »> § Fully developed region »?

Wake Uniform Invisci d,
entrance irrotational core
velocity

4
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_— Stream Function

o Velocity potential (¢)
— automatically satisfies the condition of irrotationality
— solution of a Laplace equation

o A second function () may be defined in a complementary way
— automatically satisfies the continuity equation

ou Ov , . .
—+—=0 in a 2D, Cartesian coordinates
ox Oy
Y= oy _5_W stream function, valid for
N dy > Ox rotational and irrotational flows

— and satisfies the condition of irrotationality as well

* in two-dimensional flow
ov ou ov Ou
w=0,=0, ¥, =——— SLooy=——-—=0
ox Oy ox Oy
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2 2
ov Ou i(_é_l// _g(ay/):ayzx+ayzfzvzl//:0
Oox Oy Ox Ox Oy Oy ox~ 0Oy

o Stream function, like the velocity potential, should satisfy Laplace

equation.
1. Flow lines of constant y are streamlines
— (Proof)

v =y(x,y)
oy oy

dy =——dx+—dy =—vdx+udy =0 (" ¥ = constant)
ox oy

. d_yj _Y

dx , U
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2. Difference of values between two streamlines gives the volume of fluid
which is flowing between these two streamlines

B

control surface AB of arbitrary shape

total volume flow rate between (5 B
) . O=\| udy—\| vdx
streamlines per unit depth 4 4

integrating  dy = —vdx + udy

W, — VY, :—ijdx+Jjudy=Q
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Streamlines (= constant) and the lines of ¢ = constant (equipotential

3.
lines) are orthogonal to each other
0 0
do= —¢dx + —¢dy =udx+vdy =0 (constant ¢)
ox oy
) __u
dx ), v
LAy Ay [T
Cdx 4 dax ) = . 0\ Stream lines
v B ' s
— Equipotential
orthogonal T/ //lines
; A ;
. /
Sharp—crestéd weir LT
Free-overfall flow
example: flow over a free over-fall weir
(Kabiri-Samani et al. Int. J. Hydraulic Eng., 2012)
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Weir — kind of a small dam
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_ — Complex Potential/Velocity

o Complex variables theory
— Analytic Function

* A function F(z) of the complex variable z = x + iy is said to be
analytic if the derivative dF/dz exists at a point z; and in some
neighborhood of z, and if the value of dF/dz is independent of the
direction in which it is calculated.

— Singular Points

* Asingular point is any point at which F(z) is not analytic. If F(z) is
analytic in some neighborhood of the point z,, but not at z; itself,
then z; is called an isolated singular point of F(z).

— Derivative of Analytic Function

* If F(z) is analytic, then dF/dz will exist and may be calculated in any
direction, so that

dF_oF __oF
dz Ox oy
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_ — Complex Potential/Velocity

o The velocity components u and v may be expressed in terms of either the
velocity potential or the stream function

|9 _ v

ox Oy ¢and wautomatically satisfy the
b 0 _ 1% Cauchy-Riemann equations

oy ox

o Let’s define complex potential F(z) to make it easier to analyze potential

flow
F(z)=¢(x,y)+iy(x,y), where z = x +iy

— If F(z) is an analytic function, ¢and  will automatically satisfy the
Cauchy-Riemann equations

— for every analytic function F(z), the real part is automatically a valid
velocity potential and the imaginary part is a valid stream function
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_ Complex Potential/Velocity

— First, solve Laplace equations for y and ¢
— Second, velocity field is obtained from the definition of y and ¢
— Third, pressure field is obtained from Bernoulli egn

Disadvantage

* inverse: first get the solution and then find the original physical
problem (it’s ok as an educational purpose)

* can’t be generalized to three-dimensional flow
— Advantage

* Powerful

* Need not to solve complex PDEs

* Since F(z) is analytic, dF/dz is a point function (independent of the
direction)
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_ Complex Potential/Velocity

_dF_OF 3, 0y

Wiz)=—=—= i =u—iv
dz ox Ox ox
Complex Velocity
or —ia—F:— %+ 8_:// =u—1iv
qy y Oy

WW =(u—iv)(u+iv)=u’ +v* (always scalar)

Recall, u-u :V¢-V¢=u2+v2
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_omplex Potential/Velocity

o Sometimes, we may need to work with cylindrical coordinates

1 oy _ 04 oy 104
uR:__:_’ uez__:__ v

R 060 OR OR ROR p
F(z2)=¢(2)+iy(z), Z:r(COS(9+iSin(9):rei9 \

7 .
U=u, cosH+uecos(5—¢9j:uR cos@—u,smo

. (7 .
v=uRs1nt9+ues1n(5—¢9)=uR sin@ +u, cos

W=(u, - iug)e_ie
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o F(z)=Uz (U: real number)

Velocity potential: W (z) =u—iv=U U
u=U, v=0—> Uniform rectilinear flow
o F(z)=—-iVz x
Velocity potential: W(z)=u—iv=—iV v
u=0, v=V —> Uniform vertical flow
4
o F(z)=Ve ™z
Velocity potential: W (z)=u—iv=V cosa—iV sinx !

u=Vcosa, v=Vsina

y
—> uniform flow inclined at %
an angle ato the x axis /f
[44
X
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rtex Flows

o Complex potentials that correspond to the flow fields generated by
sources, sinks, and vortices are obtained by considering F(z) to be

proportional to ‘Inz’.

F(z)=clnz=cIn(Re’)=cInR +icO = ¢ +iy

p=clnR
In polar coordinates
v =ct
c C i . —i
W(z)=—=—e" =(u, —iu,)e"”
z R
Up = %, u,=0

Strength of a source

m= .[02” u,Rd0 = .[02” cdO =2rc

_| Source(c > 0)

. . . [ WA
equipotential lines AN

) \
streamlines—_ X

F(z)= 1lnz, F(z)= ﬂln(z —-Z,)
2r 2r

Volume of fluid leaving the source per unit
time per unit depth of the flow field

2017 Spring

¢=cl
w=——clnR
.C .C . —i -
W(z)=—i—=—i—e " =(u, —iuy)e™” A
z R equipotential lines
c
up, =0, u, = R streamlines—

Inviscid Flow

ortex Flows
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o Clearly, the complex potential for a sink, which is a negative source, is
obtained by replacing m by —m.

F(z)=—iclnz=—icIn(Re”)=cO—icInR = ¢+ iy

|
|
|
|
|

Direction of the flow is positive (counterclockwise) for ¢ > 0, and the
resulting flow field is a vortex; clockwise for c< 0

o Strength of a vortex, circulation

2 2z . I
I'= Iudlzjo ungﬁzj-O cd@ =2rc —> F(z):—zgln(z—zo)

2017 Spring

Inviscid Flow
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The flow field for z, = 0 is called free vortex.

That is, for any closed contour that does not include the singularity, the
circulation will be zero and the flow will be irrotational.

o All the circulation and vorticity associated with this type of vortex is
concentrated at the singularity.
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o Flows in sharp bends or sectors are represented by complex potentials
that are proportional to z" (n > 1).

o F(z)=Uz"=U(Re")" =UR"e" =UR"(cosnf +isinnd) = ¢ +iy

¢ =UR" cosnf
y =UR"sinn6 equipotential lines /
W(z) =nUz"" = nUR""e"" ™" streamlines 7

= (nUR""' cosn@ +inUR" "' sinn@)e ™" = (u, —iu,)e "

] 7/~
u, =nUR"" cosn@, u,=-nUR"" sinn@ e Ul
/
e = f e - /// //
X [N S—

0<O<: u,>0, u,<0
2n

Vs T
—<0<—:u, <0, u,<0
2n n
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o The complex potential for the flow around a sharp edge, such as the edge
of a flat plate, is obtained from the function z%/2.

o F(z)=cz'? =c(Re")"? =cR"?"* = cR”z(cos§+ ising) = ¢+iy

0
1/2
¢=cR " cos— equipotential lines
0 streamlines
w =cR'"? sinE —
c c C o i
W(Z) — _ 0/2 _ i0/2 —if

221/2 - 2R1/2 € - 2R1/2 €

c e .. 0. , _
:W(COSEHSIHE)e gz(uR—zug)e ¢

Up 2R1/2COSE, U, = 2Rl/zsmz {

0<O<m:u,>0,u,<0

7<0<2m: u, <0, u,<0
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o The function 1/z has a singularity at z = 0, and in the context of complex
potentials, this singularity is called a doublet.

o Physically, doublet may be considered to be the coalescing of a source and

a sink. F(2) :ﬂln(z_hg)_ﬂln(z—é')
2 2

l+¢/z

m m
=—1In =—1In
2 z—¢ 2w l-¢&/z

1 e (e (&Y -~ 7 -
1_82“7@ +(z) el
zZ

gl (5

T z Z z z

:ﬂlnlil+2£+(—j +(£j +--}:ﬂln[l+2£}:ﬂ(2£)
27 z \z z 2r z 2r\ z

)
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o Let & > 0 and m — o such as lin%(mg) =y (u: constant)

Then, F(z) = £
zZ
o complex potential u/z may be thought of as being the equivalent of the
superposition of a very strong source and a very strong sink that are very

close together.

. v

X —1i ) ;
Fz)=H="AH_= T =iy '
z  X+iy X +y
X y
¢ =H— ) W=—U 2 ) \
X -I-y X +y n -
x2+y2+ﬁy:O L—‘e ‘—-‘E
4
2 2 ——
il i) (4] _—
2y 2y
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H H iz H o _-io
o W(Z)z—?z—Pe =—Fe e
= —%(cos@—isin B)e
H H .
Up = —Pcos@,ut9 = —Psmé’
F(z)= i Doublet flow whose strength p is located at z,
z—2z,
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