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2017 Spring Inviscid Flow

_r Cylinder (w/o circulation)

o Consider the superposition of a uniform rectilinear flow and a doublet at
the origin, using a superposition principle

F(z)=Uz+ﬁ
z

o For a certain choice of i, the circle R = a becomes a streamline. On the
circle R = a, z = ae'¥, so that the complex potential on this circle is

F(z)=Uae” + £ e = (Ua + ﬁ) cos 6 +i(Ua — ﬁ) sin @
a

cp=Ua-)sing /ﬂ //_—\\\
a N\
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_Iar Cylinder (w/o circulation)

o Here, the flow around a circular cylinder predicts no hydrodynamic force
acting on the cylinder.

— the flow is symmetric about the x axis; pressure is same for upper and
lower region; No lift force
— Similarly, the symmetry of the flow about the y axis; No drag force

(D’Alembert Paradox)

thin front
boundary layer

v

flow separation
and wake

ReD=lO

5

~—7 White (1986)

— ldealized flow situation that would be approached if viscous effects
are minimized

— For more streamlined bodies, e.g., airfoils, the potential-flow solution
is approached over the entire length of the body
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_Iar Cylinder (w/ circulation)
a’ I
o F(z)=U(z+?j+Zglnzﬁ@

By adding the vortex, v will no longer be zero
A vortex .
on R = a, another constant value. It is useful to

make y=0onR=a.

F(z)= U(ae’p + ae_ie) + iLlnae’ﬂ +c

2
I I
=2Uacos@——0O0+i—Ina+c
2 2
Nl
Then, choose ¢ =—i—Ina—>y =0onR=a
2
a> r uniform rectilinear flow of magnitude U
F(z)= U(z + —j +i—In— approaching a circular cylinder of radius a that
& 27 a has a negative vortex of strength I" around it
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r Cylinder (w/ circulation)

all velocity components are zero —>
Inviscid Flow

4

At stagnation point
o No stagnation on the surface of a cylinder

2017 Spring
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lar Cylinder (w/ circulation)

o No stagnation on the surface of a cylinder

R’ - LRS +a’>=0
27
r ry r 47Ua’)’
R =—+ (—J —a’, == 1+ 1—[ )
4rU 4rU a 4rnUa r
T R, I (47[Ua T
0 =—,—= —, 1= R,<aasT — oo: reject
2 a 4rnUa
2
Qszg ,ﬁz I 1+ - 4rUa
2 a 4nUa r
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o The obvious way to evaluate the magnitude of force

— velocity components from the complex potential = pressure
distribution around the body surface from Bernoulli equation 2>

integration of this pressure distribution

o The Blasius laws
— aconvenient alternative
— complex potential for the flow around a body = evaluate the forces
and the turning moment acting on the body by means of simple
contour integrals
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o Let’s consider a body (C;) enclosed by the contour C,.
— X, Y, M: forces and moment acting on the center
of gravity

— Force balance for the fluid between C, and C;:
net external force acting on the positive x
direction must equal the net rate of increase of
the x component momentum

-X - J . pdy = ICO pu(udy —vdx)

— Since C; (body surface) is a streamline, there is
no momentum transfer through it.

— Force “X” is coming from the integration of
pressure acting on C,.

— Similarly in y-direction: —Y+JC pdx:J pv(udy —vdx)

Co
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© |X= J.C (= pdy — pu’dy — puvdx)

Y= IC (pdx — puvdy + pv’dx)

1
p+ E,o(u2 +v%) = B (constant) Bernoulli equation

X = p_[c [uvdx —%(u2 —vz)dy} J_ y J_
’ «— Bdx=| Bdy=0
G G

1
Y= —P_[CO [”de + 5(”2 - VZ)dx} Eliminate the pressure!

o Evaluation of the complex integral of complex velocity, W

igjq) Wdz

2017 Spring Inviscid Flow 10



o i%jco Widz = i%jco (1 — iv)* (dx + idy)

= iﬁjc {[(u2 —v))dx + 2uvdy} + i[(u2 —v)dy — 2uvdx}}

= p.[co {[uvdx — % (u* —v* )dy} +1i [uva’y + %(u 2y )a’x}}

=X-iY

C, is any closed contour that encloses the body under
consideration

* Force can be calculated directly from the velocity

* First Blasius’ integral law

* Residue Theorem will be used to apply this actually
(will see next chaper)

X—iy =i2[ w
296G
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o Moment balance

-M + L [Pde + pydy + p(udy —vdx)uy — p(udy — vdx)vx] =0

Bernoulli M = '[ [pxdx + pydy + p(u’ydy +v*xdx —uvydx — uvxdy)}
equation G
was used

toremove = pjc [—%(uz +v)(xdx + ydy) + (uzydy +v7xdx) — (uvydx + uvxdy)}

pressure!
P T s
== JCO[(u v)(xdx — ydy) + 2uv(xdy + ydx)}
o Similarly, it can be shown that

Re(g jco szdzj - Re{g jco (x +iy)(u — iv)*(dx + idy)} - M

M = —£Re (J ZWde) * Mis hydrodynamic moment acting on the body
2 G (clockwise direction is positive!)
* Second Blasius’ integral law
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' esidue Theorem

o Laurent Series

— If F(z) is analytic at all points within the annular region r, < r < r; whose
center is at z,, then F(z) may be represented by
b b
2 5 + 1 1
(z=2z))" (z2-2)

F(z)=-+ +a,+a(z—z))+a,(z—z,)" +-

a = [ ) _ge o012,
27 (E—2,)

b=t Fle) —dé&, n=0,1,2,...
2mide (E—z,)"

— The contour C: r=r,, contour Cy: r=r;
— Part of the series that contains b,,: principal part
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o Residues

— The residues of a function at z,: coefficient b, (i.e., 1/z term) in its
Laurent Series about the point z,,.

o Residue Theorem

— If F(z) is analytic within and on a closed curve C, except for a finite
number of singular points z;, z,,.....z,, then,

jCF(z)dz =27i(R,+ R, +---R))

— R, is the residue at z,.
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_n a Circular Cylinder

o Complex potential for the flow around a circular cylinder w/ circulation
2 .
r
F(z)= U[z+a—j+l—ln£
z 2w a
o Velocity potential

a’ ir
W(z) :U£1——2J+—
z 2wz

2U%* U%* UT iUTa*> T°
y  t———+ o 3 2 2
z z Tz V(94 Az

W (z)=U’-

X—iY:iﬁj Wdz
296

=i g[sz(residues of W? inside CO)J
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_n a Circular Cylinder

o Singular point of W2 is only z; = 0, where the centers of doublet and vortex
are located together.

o Furthermore, W2 is already written as a form of Laurent Series about z=0

2U%* U’a* iUTa? I’
W(z)=U* - + —
(2) z2 z* 7z’ 47’ z*

R, = iur
V4
X —iY = iﬁ{zmtﬂﬂ — —ipUT
2 V4
X=0 Drag force: d’Alembert Paradox

Y =pUI" Lift force: Kutta-Joukowski Law
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_n a Circular Cylinder

o Evaluation of the moment
22 2 4 . . 2 2
ZWZ(Z)ZUZZ—zUa +U§1 +1UF_1UF21 3 F2
z z T Tz Az

M = —BRe(j zW2dz)
2 G

- _§[27n’ Z(residues of zZW? inside CO)]

FZ

R, =-2U%" -

ﬂ =0 As expected!
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Let’s consider 2D potential flow.

Flow may be analyzed via the complex (physical) plane (z-plane), where
the body contour is denoted by S,, usually in a complicated shape.

o Corresponding to this flow, we can introduce an auxiliary complex plane
(¢-plane) with the body contour S, simple enough, say, a circle, such that
the complex potential F(C) for this flow may be easily found.

Y n

Analytic function !

A EE
N> N

z ¢

Physical plane Auxiliary plane
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o #(x,y) = #(&.1m)

o’¢g o o’ 0’
V? ¢=—- ¢ ¢ =0 > ¢ ¢ =0
ox’ ay ol 877
o _ogloe], ovlon -
. Gflﬁ_x 577'@' can be found from ¢ = f(z2)
00905 _ 5¢5§ o’¢ on\o& 5¢5§ b= 4Em)
ox\ 0& ox 0E* ox 5§8n ox ) Ox 85 ox’ =0
o (ogon)_( ¢ a§+a¢an on , oo
ox\ On ox 0&n ox  on® ox ) Ox Gx on
00900V, Sy(0n) 0% scon 280 cey
ooyt o0&\ ax ) on*\ ox o&on ox ox  O& ox*  on o’
@_@(%T 6%(@)12 09 o5on 090 090
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2 2
7.0,
X Y
(a_f) o) |(2e), (a_nj ), (050n 0com) O
X oy 0&° ox ay on’ Ox Ox Oy Oy )0&n
2 2 2 2
4 6_54_8_%: %4_ 0 77 a a¢:0
x> oy’ Joé | ox® ay on
o For conformal transformation, f(z) is analytic and &, 7 are harmonic.
— & nare solution of Cauchy-Riemann equation and of Laplace
equation, as well. pY 5 Py 5 5277+5277_0
8x2 ot oy
¢ _on
Gx_ay _)65877 o on a_fa_ﬂ_a_ﬂa_f
o og Ox Ox Oy 0y Ox Ox Ox Ox
oy ox
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i 2 2 2 2
(6_77) + 8_77 0 ¢25 + 0 f =0 should be satisfied for all f(z)
ox o&” on

R e

Laplace equation in the z-plane transforms into Laplace equation in the -

o
plane, provided these two planes are related by a conformal
transformation.

o Complex potential in the z-plane is also a valid complex potential in the ¢-
plane, and vice versa: ¢(x,y) +iy(x,y) =@(&,n) +iy(E,n)
o Then, how about the complex velocity?
dF(z) dF({)dS d
W(z)= (2) _dFi)ds _ —QVW(é') > Not mapped one to one, but they
dz dé dz dz ;
are proportional to each other
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o

Strength of a singular point is maintained after the transformation

Net strength of all the sources/sinks inside C: m
Net strength of all the vortices inside C: I~

m= Icu -ndl =Ic(udy —vdx)

r= jc udl :L (udx +vdy) k

jc W(z)dz = jc (u—iv)(dx +idy)
= ch (udx +vdy) + ijc (udy —vdx)

=T'+im

I' +im, —.[ W(z)dz —J' W(;’)—gdz Sources, sinks, and vortices map into sources,
dz sinks, and vortices of the same strength

= IC W(&)ds =T, +im, under a conformal transformation.
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o In summary,

— complex potential for the flow around some body in the z-plane 2>
complex potential for the body corresponding to the conformal
mapping via substituting ¢ = f(z) into the complex potential F(z).

— Complex velocities, on the other hand, do not transform one to one
but are proportional to each other.

— Sources, sinks, and vortices maintain the same strength under
conformal transformations.
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