INVISCID FLOW Week 7

Prof. Hyungmin Park
Multiphase Flow and Flow Visualization Lab.

Department of Mechanical and Aerospace Engineering
Seoul National University

2017 Spring

Inviscid Flow

Flow around a Circular Cylinder (w/o circulation)

 Consider the superposition of a uniform rectilinear flow and a doublet at the origin, using a superposition principle

$$F(z) = Uz + \frac{\mu}{z}$$

 \circ For a certain choice of μ , the circle R = a becomes a streamline. On the circle R = a, z = $ae^{i\theta}$, so that the complex potential on this circle is

$$F(z) = Uae^{i\theta} + \frac{\mu}{a}e^{-i\theta} = (Ua + \frac{\mu}{a})\cos\theta + i(Ua - \frac{\mu}{a})\sin\theta$$

$$\therefore \psi = (Ua - \frac{\mu}{a})\sin\theta$$
If $\mu = Ua^2$, $\psi = 0$ on $R = a$.
$$F(z) = U\left(z + \frac{a^2}{z}\right)$$
(a) (b)

Flow around a Circular Cylinder (w/o circulation)

- Here, the flow around a circular cylinder predicts no hydrodynamic force acting on the cylinder.
 - the flow is symmetric about the x axis; pressure is same for upper and lower region; No lift force
 - Similarly, the symmetry of the flow about the y axis; No drag force (D'Alembert Paradox)

- Idealized flow situation that would be approached if viscous effects are minimized
- For more streamlined bodies, e.g., airfoils, the potential-flow solution is approached over the entire length of the body

3 2017 Spring **Inviscid Flow**

Flow around a Circular Cylinder (w/ circulation)

$$\circ F(z) = U\left(z + \frac{a^2}{z}\right) + \underline{i\frac{\Gamma}{2\pi}\ln z} + \underline{c}$$

A vortex

By adding the vortex, ψ will no longer be zero on R = a, another constant value. It is useful to make $\psi = 0$ on R = a.

$$F(z) = U\left(ae^{i\theta} + ae^{-i\theta}\right) + i\frac{\Gamma}{2\pi}\ln ae^{i\theta} + c$$
$$= 2Ua\cos\theta - \frac{\Gamma}{2\pi}\theta + i\frac{\Gamma}{2\pi}\ln a + c$$

Then, choose
$$c = -i \frac{\Gamma}{2\pi} \ln a \rightarrow \psi = 0$$
 on $R = a$

$$F(z) = U\left(z + \frac{a^2}{z}\right) + i\frac{\Gamma}{2\pi} \ln \frac{z}{a}$$

 $F(z) = U \left(z + \frac{a^2}{z}\right) + i \frac{\Gamma}{2\pi} \ln \frac{z}{a}$ uniform rectilinear flow of magnitude U approaching a circular cylinder of radius a that has a negative vortex of strength Γ around it

Flow around a Circular Cylinder (w/ circulation)

$$OW(z) = U\left(1 - \frac{a^2}{z^2}\right) + i\frac{\Gamma}{2\pi}\frac{1}{z} = U\left(1 - \frac{a^2}{R^2}e^{-i2\theta}\right) + i\frac{\Gamma}{2\pi R}e^{-i\theta}$$

$$= \left[U\left(e^{i\theta} - \frac{a^2}{R^2}e^{-i\theta}\right) + \frac{i\Gamma}{2\pi R}\right]e^{-i\theta}$$

$$= \left\{U\left(1 - \frac{a^2}{R^2}\right)\cos\theta + i\left[U\left(1 + \frac{a^2}{R^2}\right)\sin\theta + \frac{\Gamma}{2\pi R}\right]\right\}e^{-i\theta}$$

$$u_R = U\left(1 - \frac{a^2}{R^2}\right)\cos\theta, \ u_\theta = -U\left(1 + \frac{a^2}{R^2}\right)\sin\theta - \frac{\Gamma}{2\pi R}$$

On the surface of a cylinder (R = a)

$$u_R = 0, \ u_\theta = -2U\sin\theta - \frac{\Gamma}{2\pi a}$$

At stagnation point, all velocity components are zero $\implies \sin \theta_s = -\frac{\Gamma}{4\pi Ua}$

2017 Spring Inviscid Flow 5

Flow around a Circular Cylinder (w/ circulation)

No stagnation on the surface of a cylinder

$$U\left(1 - \frac{a^2}{R_s^2}\right)\cos\theta_s = 0, \ U\left(1 + \frac{a^2}{R_s^2}\right)\sin\theta_s = -\frac{\Gamma}{2\pi R_s}$$

$$R_s \neq a$$

$$\theta_s = \frac{\pi}{2}, \frac{3}{2}\pi \rightarrow U\left(1 + \frac{a^2}{R_s^2}\right) = \pm \frac{\Gamma}{2\pi R_s}$$

Flow around a Circular Cylinder (w/ circulation)

No stagnation on the surface of a cylinder

$$R_s^2 - \frac{\Gamma}{2\pi U} R_s + a^2 = 0$$

$$R_{s} = \frac{\Gamma}{4\pi U} \pm \sqrt{\left(\frac{\Gamma}{4\pi U}\right)^{2} - a^{2}}, \frac{R_{s}}{a} = \frac{\Gamma}{4\pi U a} \left[1 \pm \sqrt{1 - \left(\frac{4\pi U a}{\Gamma}\right)^{2}}\right]$$

$$\begin{cases} \theta_s = \frac{\pi}{2}, \frac{R_s}{a} = \frac{\Gamma}{4\pi U a} \left[1 - \sqrt{1 - \left(\frac{4\pi U a}{\Gamma}\right)^2} \right] & \text{R}_s < \text{a as } \Gamma \to \infty \text{: reject} \\ \theta_s = \frac{3}{2}\pi, \frac{R_s}{a} = \frac{\Gamma}{4\pi U a} \left[1 + \sqrt{1 - \left(\frac{4\pi U a}{\Gamma}\right)^2} \right] \end{cases}$$

$$R_s < a$$
 as $\Gamma \rightarrow \infty$: reject

7 2017 Spring **Inviscid Flow**

Blasius' Integral Laws

- The obvious way to evaluate the magnitude of force
 - velocity components from the complex potential → pressure distribution around the body surface from Bernoulli equation \rightarrow integration of this pressure distribution
- The Blasius laws
 - a convenient alternative
 - complex potential for the flow around a body \rightarrow evaluate the forces and the turning moment acting on the body by means of simple contour integrals

Blasius' Integral Laws

- Let's consider a body (C_i) enclosed by the contour C_0 .
 - X, Y, M: forces and moment acting on the center of gravity
 - Force balance for the fluid between C₀ and C_i:
 net external force acting on the positive x
 direction must equal the net rate of increase of
 the x component momentum

$$-X - \int_{C_0} p dy = \int_{C_0} \rho u(u dy - v dx)$$

- Since C_i (body surface) is a streamline, there is no momentum transfer through it.
- Force "X" is coming from the integration of pressure acting on C_i.
- Similarly in y-direction: $-Y + \int_{C_0} p dx = \int_{C_0} \rho v(u dy v dx)$

2017 Spring Inviscid Flow 9

Blasius' Integral Laws

$$\begin{cases} X = \int_{C_0} (-pdy - \rho u^2 dy - \rho uv dx) \\ Y = \int_{C_0} (pdx - \rho uv dy + \rho v^2 dx) \end{cases}$$

$$p + \frac{1}{2}\rho(u^2 + v^2) = B \text{ (constant)} \qquad \text{Bernoulli equation}$$

$$\begin{cases} X = \rho \int_{C_0} \left[uv dx - \frac{1}{2}(u^2 - v^2) dy \right] \\ Y = -\rho \int_{C_0} \left[uv dy + \frac{1}{2}(u^2 - v^2) dx \right] \end{cases} \qquad \int_{C_0} B dx = \int_{C_0} B dy = 0$$
Eliminate the pressure!

Evaluation of the complex integral of complex velocity, W

$$i\frac{\rho}{2}\int_{C_0}W^2dz$$

Blasius' Integral Laws

$$i \frac{\rho}{2} \int_{C_0} W^2 dz = i \frac{\rho}{2} \int_{C_0} (u - iv)^2 (dx + idy)$$

$$= i \frac{\rho}{2} \int_{C_0} \left\{ \left[(u^2 - v^2) dx + 2uv dy \right] + i \left[(u^2 - v^2) dy - 2uv dx \right] \right\}$$

$$= \rho \int_{C_0} \left\{ \left[uv dx - \frac{1}{2} (u^2 - v^2) dy \right] + i \left[uv dy + \frac{1}{2} (u^2 - v^2) dx \right] \right\}$$

$$= X - iY$$

$$X - iY = i\frac{\rho}{2} \int_{C_0} W^2 dz$$

- C_0 is any closed contour that encloses the body under consideration
 - Force can be calculated directly from the velocity
 - First Blasius' integral law
 - Residue Theorem will be used to apply this actually (will see next chaper)

2017 Spring **Inviscid Flow** 11

Blasius' Integral Laws

Moment balance

Similarly, it can be shown that

$$\operatorname{Re}\left(\frac{\rho}{2}\int_{C_0} zW^2 dz\right) = \operatorname{Re}\left[\frac{\rho}{2}\int_{C_0} (x+iy)(u-iv)^2 (dx+idy)\right] = -M$$

$$M = -\frac{\rho}{2} \operatorname{Re} \left(\int_{C_0} z W^2 dz \right)$$

- $M = -\frac{\rho}{2} \operatorname{Re} \left(\int_{C_0} z W^2 dz \right) \quad \bullet \quad \text{M is hydrodynamic moment acting on the body (clockwise direction is positive!)}$
 - Second Blasius' integral law

Laurent Series and Residue Theorem

- Laurent Series
 - If F(z) is analytic at all points within the annular region $r_0 < r < r_1$ whose center is at z_0 , then F(z) may be represented by

$$F(z) = \dots + \frac{b_2}{(z - z_0)^2} + \frac{b_1}{(z - z_0)^1} + a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \dots$$

$$a_n = \frac{1}{2\pi i} \int_c \frac{F(\xi)}{(\xi - z_0)^{n+1}} d\xi, \quad n = 0, 1, 2, \dots$$

$$b_n = \frac{1}{2\pi i} \int_{c_0} \frac{F(\xi)}{(\xi - z_0)^{-n+1}} d\xi, \quad n = 0, 1, 2, \dots$$

- The contour *C*: $r = r_0$, contour C_0 : $r = r_1$
- Part of the series that contains b_n : principal part

2017 Spring Inviscid Flow 13

Laurent Series and Residue Theorem

- Residues
 - The residues of a function at z_0 : coefficient b_1 (i.e., 1/z term) in its Laurent Series about the point z_0 .
- Residue Theorem
 - If F(z) is analytic within and on a closed curve C, except for a finite number of singular points $z_1, z_2,, z_n$, then,

$$\int_C F(z)dz = 2\pi i (R_1 + R_2 + \dots + R_n)$$

 $-R_n$ is the residue at z_n .

Force and Moment on a Circular Cylinder

o Complex potential for the flow around a circular cylinder w/ circulation

$$F(z) = U\left(z + \frac{a^2}{z}\right) + \frac{i\Gamma}{2\pi} \ln \frac{z}{a}$$

Velocity potential

$$W(z) = U \left(1 - \frac{a^2}{z^2} \right) + \frac{i\Gamma}{2\pi z}$$

$$W^2(z) = U^2 - \frac{2U^2a^2}{z^2} + \frac{U^2a^4}{z^4} + \frac{iU\Gamma}{\pi z} - \frac{iU\Gamma a^2}{\pi z^3} - \frac{\Gamma^2}{4\pi^2 z^2}$$

$$X - iY = i\frac{\rho}{2} \int_{C_0} W^2 dz$$

$$= i\frac{\rho}{2} \left[2\pi i \sum (\text{residues of } W^2 \text{ inside } C_0) \right]$$

2017 Spring Inviscid Flow 15

Force and Moment on a Circular Cylinder

- O Singular point of W^2 is only $z_0 = 0$, where the centers of doublet and vortex are located together.
- o Furthermore, W^2 is already written as a form of Laurent Series about z = 0

$$W^{2}(z) = U^{2} - \frac{2U^{2}a^{2}}{z^{2}} + \frac{U^{2}a^{4}}{z^{4}} + \underbrace{\frac{iU\Gamma}{\pi z}}_{i} - \frac{iU\Gamma a^{2}}{\pi z^{3}} - \frac{\Gamma^{2}}{4\pi^{2}z^{2}}$$

$$R_{0} = \frac{iU\Gamma}{\pi}$$

$$X - iY = i\frac{\rho}{2} \left[2\pi i \left(\frac{iU\Gamma}{\pi} \right) \right] = -i\rho U\Gamma$$

$$Y = 0$$
Proof forces d'Alembert Borndov

X = 0 Drag force: d'Alembert Paradox

 $Y = \rho U \Gamma$ Lift force: Kutta-Joukowski Law

Force and Moment on a Circular Cylinder

Evaluation of the moment

$$zW^{2}(z) = U^{2}z - \frac{2U^{2}a^{2}}{z} + \frac{U^{2}a^{4}}{z^{3}} + \frac{iU\Gamma}{\pi} - \frac{iU\Gamma a^{2}}{\pi z^{2}} - \frac{\Gamma^{2}}{4\pi^{2}z}$$

$$M = -\frac{\rho}{2}\operatorname{Re}\left(\int_{C_{0}}zW^{2}dz\right)$$

$$= -\frac{\rho}{2}\left[2\pi i\sum\left(\operatorname{residues of }zW^{2}\operatorname{ inside }C_{0}\right)\right]$$

$$R_{0} = -2U^{2}a^{2} - \frac{\Gamma^{2}}{4\pi^{2}}$$

$$M = -\frac{\rho}{2}\operatorname{Re}\left[2\pi i\left(-2U^{2}a^{2} - \frac{\Gamma^{2}}{4\pi^{2}}\right)\right] = 0 \quad \text{As expected!}$$

2017 Spring Inviscid Flow 17

Conformal Transformation

- Let's consider 2D potential flow.
- \circ Flow may be analyzed via the complex (physical) plane (z-plane), where the body contour is denoted by S_z , usually in a complicated shape.
- O Corresponding to this flow, we can introduce an auxiliary complex plane $(\zeta$ -plane) with the body contour S_{ζ} simple enough, say, a circle, such that the complex potential $F(\zeta)$ for this flow may be easily found.

Conformal Transformation

2017 Spring Inviscid Flow 19

Conformal Transformation

$$\begin{split} &\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0 \\ &\left[\left(\frac{\partial \xi}{\partial x} \right)^2 + \left(\frac{\partial \xi}{\partial y} \right)^2 \right] \left(\frac{\partial^2 \phi}{\partial \xi^2} \right) + \left[\left(\frac{\partial \eta}{\partial x} \right)^2 + \left(\frac{\partial \eta}{\partial y} \right)^2 \right] \left(\frac{\partial^2 \phi}{\partial \eta^2} \right) + 2 \left(\frac{\partial \xi}{\partial x} \frac{\partial \eta}{\partial x} + \frac{\partial \xi}{\partial y} \frac{\partial \eta}{\partial y} \right) \frac{\partial^2 \phi}{\partial \xi \partial \eta} \\ &+ \left(\frac{\partial^2 \xi}{\partial x^2} + \frac{\partial^2 \xi}{\partial y^2} \right) \frac{\partial \phi}{\partial \xi} + \left(\frac{\partial^2 \eta}{\partial x^2} + \frac{\partial^2 \eta}{\partial y^2} \right) \frac{\partial \phi}{\partial \eta} = 0 \end{split}$$

- \circ For conformal transformation, f(z) is analytic and ξ , η are harmonic.
 - ξ , η are solution of Cauchy-Riemann equation and of Laplace equation, as well. $\frac{1}{2}$ $\frac{1}{2}$

$$\frac{\partial^2 \xi}{\partial x^2} + \frac{\partial^2 \xi}{\partial y^2} = 0, \quad \frac{\partial^2 \eta}{\partial x^2} + \frac{\partial^2 \eta}{\partial y^2} = 0$$

$$\begin{cases} \frac{\partial \xi}{\partial x} = \frac{\partial \eta}{\partial y} \\ \frac{\partial \xi}{\partial y} = -\frac{\partial \eta}{\partial x} \end{cases} \longrightarrow \frac{\partial \xi}{\partial x} \frac{\partial \eta}{\partial x} + \frac{\partial \xi}{\partial y} \frac{\partial \eta}{\partial y} = \frac{\partial \xi}{\partial x} \frac{\partial \eta}{\partial x} - \frac{\partial \eta}{\partial x} \frac{\partial \xi}{\partial x} = 0$$

Conformal Transformation

$$\left[\left(\frac{\partial \eta}{\partial x} \right)^{2} + \left(\frac{\partial \eta}{\partial y} \right)^{2} \right] \left(\frac{\partial^{2} \phi}{\partial \xi^{2}} + \frac{\partial^{2} \phi}{\partial \eta^{2}} \right) = 0 \qquad \text{should be satisfied for all } f(z)$$

$$\left[\left(\frac{\partial \xi}{\partial x} \right)^{2} + \left(\frac{\partial \xi}{\partial y} \right)^{2} \right] \left(\frac{\partial^{2} \phi}{\partial \xi^{2}} + \frac{\partial^{2} \phi}{\partial \eta^{2}} \right) = 0$$

- \circ Laplace equation in the z-plane transforms into Laplace equation in the ζ plane, provided these two planes are related by a conformal transformation.
- \circ Complex potential in the z-plane is also a valid complex potential in the \angle plane, and vice versa: $\phi(x,y) + i\psi(x,y) = \phi(\xi,\eta) + i\psi(\xi,\eta)$
- o Then, how about the complex velocity?

$$W(z) = \frac{dF(z)}{dz} = \frac{dF(\zeta)}{d\zeta} \frac{d\zeta}{dz} = \frac{d\zeta}{dz} W(\zeta)$$
 \rightarrow Not mapped one to one, but they are proportional to each other

21 2017 Spring **Inviscid Flow**

Conformal Transformation

Strength of a singular point is maintained after the transformation

Net strength of all the sources/sinks inside C: m Net strength of all the vortices inside C: Γ

$$m = \int_{C} u \cdot ndl = \int_{C} (udy - vdx)$$
$$\Gamma = \int_{C} udl = \int_{C} (udx + vdy)$$

$$\int_{C} W(z)dz = \int_{C} (u - iv)(dx + idy)$$

$$= \int_{C} (udx + vdy) + i \int_{C} (udy - vdx)$$

$$= \Gamma + im$$

sinks, and vortices of the same strength under a conformal transformation.

Conformal Transformation

- o In summary,
 - complex potential for the flow around some body in the z-plane \rightarrow complex potential for the body corresponding to the conformal mapping via substituting $\zeta = f(z)$ into the complex potential F(z).
 - Complex velocities, on the other hand, do not transform one to one but are proportional to each other.
 - Sources, sinks, and vortices maintain the same strength under conformal transformations.

2017 Spring Inviscid Flow 23