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2017 Spring Inviscid Flow

o Solutions for the flow around ellipses and a family of airfoils
2

z=(+ E (c%: real number)

— For ¢ o, z = ¢: the complex velocity in the two planes is the same
far from the origin (identity mapping)

* if a uniform flow of a certain magnitude is approaching a body in
the z-plane at some angle of attack, a uniform flow of the same
magnitude and angle of attack will approach the corresponding
body in the {-plane.

e dz/dl=1->W(z)=W ()

— Singularity point of transformation @ € = 0 (normally, inside the body
and of no consequence)
— Critical points of transformation: dz/d{ =0; {=*c¢

* Smooth curves passing through critical points may become corners
in the transformed plane.
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o Therefore, a smooth curve passes through the point {'=c, the
corresponding curve in the z plane will form a knife-edge or cusp.
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o Example: a circle centered at the origin of the {~plane (radius is c)

C=ce”, z=ce” +ce” =2ccosv=x+iy
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_wski Transformation

o Flow around Ellipses

— simple geometry of the circle, which we know details, will be placed in
the {~plane, and the corresponding body in the z-plane will be
investigated

* c: real and positive
* Radius: a (> ¢), center at the origin
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—ae " =|a+— |cosv+i| a—— |sinV
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x=|a+—|cosv, y=|a—— |sinv

z=qe" +

2017 Spring Inviscid Flow 5

_wski Transformation

— Equation of ellipses in z-plane is obtained.

x 2 2
(om ) (2] o
a+c/a a—c /a

1) Complex potential for a uniform flow (U) approaching this ellipse at
an angle of attack oo € the same flow to approach the circular
cylinder in the z-plane

A r I
7 é/ plane ;- planen / - &
- g -
D - T osa e
7\7\2 ///////K
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(a) z plane ¢ plane

2) Position of stagnation point
* In{plane: § =tae”

*  Corresponding points in z-plane
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_WSki Transformation

— Modified Joukouski Transformation

2 2
z:§+c—, c=z‘b—>z=§—b—
4
2 2
(Lj +(L) =1 Equation of ellipses in z-plane
a-b*/a a+b*/a

F(z)=U|z-

{ plane

(b) z plane
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_Flat-plate Airfoil

o Asareminder,
— potential flow solution for flow around a sharp edge has a singularity
(infinite velocity) at the edge itself = physically impossible

o Two ways to correct this
— Place separation point at the edge, i.e., V = finite value

— Place stagnation point at the edge, i.e., V = 0 (Kutta Condition)

o From the flow around an ellipse, if ¢ = a, then resulting ellipse in the z-

plane degenerates to a flat plate defined by the strip (-2a < x < 2a).

Physically impossible :
to realize ’
(a) z plane { planc
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_ Flat-plate Airfoil

o Leading-edge: real airfoils have a finite thickness and so have a finite
radius of curvature at the leading edge = will not be a matter

o Trailing-edge: usually quite sharp

— if a circulation exists around the flat-plate and the magnitude of this
circulation is enough to rotate the rear stagnation point to the trailing
edge, this problem will be solved.

o Kutta condition

— For bodies with sharp trailing edges that are at small angles of attack
to the free-stream, the flow will adjust itself in such a way that the
rear stagnation point coincides with the trailing edge
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_ Flat-plate Airfoil

o How to determine the amount of circulation?

I' =4zUasin a (clockwise direction)

Recall

a2eia

2
. . 1| z z
+i2asinaaln| —| =+ .|| = | —d?

2
F(z)=U Z4 (ij —a’ e+
2 V2 2/244(z/2) - a
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_ Flat-plate Airfoil

o Kutta-Joukowski Law (calculation of the lift force)
L =4npU%asina

— Lift coefficient, C,
L L

C, = = > =2rsina ~2ra
0.5pU°1  0.50U"(4a)

(for small )
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o A family of airfoils (in z-plane) obtained by Joukowski transformation from
a series of circles in {-plane whose centers are slightly displaced from the
origin = Joukowski Airfoils

— Variable: center and radius of the circle

Let’s consider the displacement of the circle in real axis.
o Asareminder,

— if the circle passes through the two critical points of the Joukowski
transformation, = ¢, then a sharp edge is obtained in z-plane

o For the leading edge of the airfoil to have a finite radius of curvature and if
there should be no singularities in the flow field, the point {'=-c should be
inside the circle in z-plane.

o But, the circle should pass {'= c for the trailing edge to be sharp.

Center: ¢ =-m
- Radius:

a=c+m=c(l+¢), e=m/c (K1)
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—>Z=é’+_ -

§=—c=2m ¢ z=—(c+2¢)-—<
1+2¢

z=—(c+26)—c[1-26+0(c") |=-2c+0(&") ~ 2c

O Trailing edge {4 =c ¢’ z=2c

Leading edge

o The chord length, / = 4¢ (chord length is not affected by the shift of circle)

a’=R*+m*>—2Rmcos(r —v) = R* + m*> + 2Rmcosv

a R 2
/;\v (c+m)’ =R’ 1+m—2+2ﬂcosv
m R R
\_/ m v m
(c+m):R(1+2Ecosv] :R(1+Ecosv+0(52))

S R=c[l+&(l-cosv)]
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o Then, from the Joukowski transformation
2 2
c : c
z=(+—=Re" +—
Re

—iv

ce
1+ &(1—cosv)

=c[l+e&(l—cosv)]e” + c[l —g(1—cosv)+ 0(52)]5”

=c[l+e&(l—cosv)]e” +

= 0[2 cosv+i2e(l—cosv)sinv + 0(52)]

2
x=2ccosv s y:izcg(l_ij 1_(ij
y =2ce(l—cosv)sinv 2c 2¢

dy 2 4
— To find the maximum thickness, ——=0—>v=—7,—7—>y=1——e&c
dv 3 3 2
b = 33ec
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o Ratio of the thickness to chord: tm% = or & = 0_77%

o Equation for airfoil

2
v 10.385(1—2£j 1—(2%
P I /

o Circulation for Kutta condition
. t )
I'=4rUasina = ﬂUl(l +0.77 %) sino
o Lift force and lift coefficient

L= ﬁpUzl(l +0.77 tm%) sina

C, = 27{1 T 0.77%jsina
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o We will show that a circle whose radius is slightly larger than ¢ and whose
center is displaced along the imaginary axis of the {~plane produces an
airfoil that has no thickness but has a camber.

h | | ‘.\v
[ i ] » ¢
!

(a) z plane { plane

4

L

= 2
/‘ ]
(b) = plane C planc
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2 2 2 2
o z=C+S =R+ e =| R+< |cosv+i| R—< |siny
g R R R

2 2
2 2
: Y. .
xzsmzv—yzcoszv=(R+—R) smzvcoszv—(R——Rj sin’ v cos” v

2 s 2 2 ) e .
=4c”sin” vcos” v equation of the airfoil surface in the z-plane

a’ =R +m’ —2Rmcos(%—v)=R2 +m’ —2Rmsinv

R _ 2
c_._J , cos?y=1——-

2Rm  2msinv 2m

m A%

2
—C\/C x2+y2+2(c——m y=4c’
m
2 2
2y -] <efas(£-1)
m c m c
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o Using ¢ = — <1 and linearize the equation, we get
c

Y c?
x2+[y+—] :cz(4+—2]
m m

_ 2\ 2
Chord length: [ =4c 24 y+l— _ r 1+ ) :
Camber height: 7 =2m 8h 4 16A

Circulation to satisfy Kutta condition

I'=4rUa sin(a + ﬂ) =4rUc sin(a - ﬁj
c c

o Lift force and lift coefficient
L =4npU?c sin(a + ﬂj
c

C, = 8ﬂ§sin(a+ﬂj = 27zsin(a+%j
c
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o Cambered airfoil of finite thickness

— Joukowski transformation in conjunction with a circle in the z plane
whose center is in the second quadrant.

(a) z plane C plane
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o Equation for the upper and lower surfaces of the airfoil

2 2 2 2
iy Ll —xz——i0.385tmax(1—2fj 1—(2%
4\ 16k 8 ! l

Circular-arc centerline Thickness effect
o Lift coefficient

C, = 27[[1 +O.77tm%jsin(a+%j

[

Thickness effect Camber effect

o Complex potential ) "
S ae*” ir —me'
F()=U ((—me"s)e g — |+ In
§ —me 2r a
o Circulation for Kutta condition
t ) 2h
I'= nUl(l +0.77 %)sm(& + 7)
* Limit in increase of thickness and camber = stall
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o maps the interior of a closed polygon in the z plane onto the upper half of
the ¢{-plane, while the boundary of the polygon maps onto the real axis of
the z plane.

A—a
o6 GeAKE =@ T by ey

a+pf+y+...=(n-2)x

2017 Spring Inviscid Flow 24



o Example flow field

— Flow around a flat plate of finite length oriented vertically (90 © angle

of attack)

E K0/ ¢ -

2
(a) g plane z=K é/ -1+D

(D: constant of integral, complex)

% F=16z=0

(b) p— {=-1z=0
W F=06z=i2a
V sz=2ayC" -1
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o To find a magnitude of uniform velocity,
— As > o,z 2a¢ and W($) — 2aW (z) =2aU
S~ F(§)=2aUl Complex potential for horizontal uniform flow

2
From mapping function ¢ == (;j +1 zDw, (D>
a
oG = %\/zz +4a’, F(z)=UNZ" +4a’
a

This result can be confirmed by the flow around an vertical
ellipse using a modified Joukowski transformation
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o Flow generated by a line source located in a two-dimensional channel

z-plane ¢-plane

>

o~
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2]
—
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- Bl a

first quadrant only,
source is located at z=0

dz _ _ K =1z=0

_:K(é/_'_l) l/Z(éf_l) 1/2: - g z .

ile | ¢=-lez=il

z=Kcosh_lg”+D .'.z:icosh_lé' g’:coshﬂ
T ’ [

— Complex potential in {-plane
F(O)=in(¢ -1), F(z) =~ 1In| coshZZ 1
27 2 [
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o Using cosh(X +Y)—cosh(X —Y)=2sinh X sinhY

coshZZ —1=2sinh? %2
[ 21 this term does not

2
=ﬂln[sinhﬂ-—j .
T U |21 gl 2¢
; _ |~
m = 4U. —
L"%U ! /2 [EV
¥,
* ;/
* ;;
*—
L
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