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2017 Spring Inviscid Flow

o Physically, there are not specific differences in 3D flow, compared to 2D
flow except it has one more dimension.
o Methodologically, however, it is completely different
— We cannot use analytic functions of complex variables
— Should solve PDE, instead

o Since bodies of interest, such as airship hulls and submarine vehicle hulls,
have an axis of symmetry, this chapter will consider only bodies that are
axisymmetric. In so doing, it will be found convenient to work in the
spherical coordinates (r, 0, ®).
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_nd Stoke’s Stream Function

o Velocity potential exists irrespective of the dimensionality of the flow field
—> Laplace equation should be satisfied.
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o Inthree dimensions it is not possible, in general, to satisfy the continuity
equation by a single scalar function (like a stream function in 2D potential

flow)
o However, in axisymmetric flow, such a function exist! 5
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-nd Stoke’s Stream Function

o 2my: volume of fluid crossing the surface of revolution which is formed by
rotating the position vector OP around the reference axis.

— y: defined such that if the position vector OP is rotated around the
reference axis = o is varied from 0 to 27t while r and 0 fixed

— First assume that the above statement is true

— Consider PP’ which is rotated about the reference axis, the resulting
surface will have a quantity of fluid 2rndy crossing it per unit time
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ential Equation

General form of solution by separation of variables

o The fundamental solutions so obtained will subsequently be
superimposed to produce more complex solutions in a manner similar to

that which was used in 2D potential flow.
#(r,0)=R(r)T(0) separable solution is sought for Laplace eq;
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The only way the equation can remain valid is for each side to be equal
[(I+1
to a constant, I(/+1) li( 4R
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2017 Spring Inviscid Flow 5

‘ ntial Equation

i(rz d—Rj—l(l +1)R=0—> R(r)=Kr"
dr dr

a(a+D)Kr* =I(I+D)Kr* =0—>a =1, —(I+1)
R(r)=Ar + % A,,B, : arbitrary constant depending on /
r

— Similarly for T(0),

,1 a sin@d—T +I1(l+1)T =0 Legendre's eq
sin@ d@ do

x=cosd
d dT
E[(l - xz)g} +I(I+1D)T =0 P,(x): Legendre’s function of the first kind

Q,(x): Legendre’s function of the second kind
T,(8) = C,B(cos §) + D,Q,(cos 6)
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— Qy(cosH) diverge for cosO = 1 for all values of |. The coefficient D, must
then be specified as being zero, since there should be no singularities
in the flow field.

— Also, P|(cos0) diverges for cosO = =1 if | is not an integer. Then it must
be specified that the quantity | be an integer.

— Combining above results,

1, B . P,(x): Legendre’s function of
¢z(r,49)=(z4ﬂ’ +rl_+ll P(cosf) (I: integer) tPll(e)firstgkind

H(r,0) = i(/llr’ ; %)P,(cos 0)
=0 r

1 d
P(x)= ﬁﬁ(xz —l)l F(x)=1, B(x)=x, P(x)= %(3)62 -1)

Legendre’s polynomials
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o Bysetting B, =0 for all /, we get ¢(r,0) =Urcos 6 .
0 for [ #1
4 =
U for/=1
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o Otherwise, there is an alternative way of evaluating the stream function.
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— the amount of fluid crossing the surface generated by OP due to the
uniform flow will be 2my.

2xy =Ur(rsin @)’

w(r,0)= %Ur2 sin” @
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o Bysetting 4, =0 forall / , we get ¢(”,9)=7- < P (cosf) =1
|0 for/#0
"T1B,#0  fori=0 u =20y =0
r

— Let Q the volume of the fluid leaving the control surface per unit time.

Q= | @-mds = joz”dwjo”(igj r?sin0d6 = -4x B,
s r

ds = r* sin 8dOd w

— Then, for a source of strength Q, the constant B, should be set equal
to —Q/(4n). That is, the velocity potential for a source of strength Q
located atr=0 s

[ﬁ-ﬁ:Bo/rz

P(r,0) = —g (‘4" for a sink)
drr
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o The quantity of fluid that crosses the surface generated by revolving the
line OP about the reference axis will depend upon whether the source Q is
considered to be slightly to the left of the origin or slightly to the right of

It.
o Here the source Q will be considered to be slightly to the right of O, so
that the quantity of fluid crossing the surface generated by OP will be

2ny +Q = IOH u, cos@2xrsind rd0

cos @

w(r,0)= _Q (I+cosf)
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o As was the case in two dimensions, the flow due to a doublet may be
obtained by superimposing a source and sink of equal strength and letting
the distance separating the source and the sink shrink to zero.
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[Flow due to a Doublet
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[Flow near a blunt nose
o By superimposing the solutions for a uniform flow and a source, the
solution corresponding to a long cylinder with a blunt nose is obtained.

w(r,0)= lUr2 sin® @ — 2(1 +cos6)
2 4

— consider y to be constant and solve the preceding equation for rin
terms of O:

\/ 2p QO l+cosd 2p 0
r= + = +
Usin’@ 27zU sin’ @ Usin’@ 4xUsin*(6/2)

_ 1 9 1 ~
"=\ azU sinpry  (Whenv=0l
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0=r/2, 1,=0/27U TN
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O=r, r,=40/47U /Q
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[Flow near a blunt nose

o Although the polar radius ry is infinite for 6 = 0, the cylindrical radius Ry is
finite.

R=rsiné, R, = 0 sin 6
TN au sin(@/2)

i —0/3+...
As 0 — 0; .smé’ _ 0-60"/3+ : 9
sin(@/2) 6/2-1/3(6/2)" +---

w(r,0)= lU,ﬁ sin? @ — 2(1 +cos ) | velocity and pressure distribution
2 4r in the vicinity of the nose of a blunt
0 axisymmetric body such as an

¢(r,0) =Urcos 6 — Ay aircraft fuselage or a submarine hull
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o The stream function for a uniform flow past a sphere may be obtained by
superimposing the solution for a uniform flow and that for a doublet.
v (r0) = L Ursin’ 0 - - sin’ 0
2 4rr

( 7 jm Equation for surface of a

I R H o .2 _
O—EUr0 sin" @ ———sin" 0 —> 1, = U sphere (y = 0)
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