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2017 Spring Inviscid Flow

o The stream function and the velocity potential for a source that is
distributed over a finite strip will be established

— gL: total volume of fluid that emanates from the source per unit time
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o Note that stream function was more compact when expressed in terms of

lengths, the result for the velocity potential is more compact in terms of
angles.
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Source Q: located at a distance | along the reference axis
Source Q*: located at the image point a2/l

Uniformly distributed line sink of strength q per unit length along OQ*

o If the spherical surface r = a is to be a stream surface, the total sink
strength inside this region must equal the total source strength there.
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field of a source

0 o o 1(a
,0)=—=(+ —=(1+ +E=—| —+r-—
w(r,0) 4”( cos 5) 4ﬂ( cos ) el aat i
' o1
v(a, 9)——2(1+cosﬁ) g (1+cosa)+Q—(1+———Zj On the sphere surface
4 4 a a

— if the point P lies on the spherical surface r = 3,
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— Thus by choosing the source strength Q* to be equal to aQ/I, the
surface r = a corresponds to the stream surface y = 0.

— Then the stream function for a sphere of radius a whose center is at
the origin and that is exposed to a point source of strength Q located a
distance | along the positive reference axis is
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€ is the distance from the field point P to the source Q
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o The solution for the flow around a family of bodies (known as Rankine
solids) is obtained by superimposing a source and a sink of equal strength
in a uniform flow field.
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o The principal dimensions of this body are the half width L and the half
height h. Both these parameters depend upon the free-stream velocity U,
the source and sink strength Q, and the distance |.

— velocity at the downstream stagnation point is zero
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— value of the cylindrical radius R, = h, when cos0; = -cos0,
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o If an arbitrary three-dimensional body is immersed in a uniform flow, the
equations of hydrodynamics predict that there will be no force exerted on
the body by the fluid.

— equation of force equilibrium for the body of fluid contained between
the surfaces Sand S,

— There is no transfer of momentum across the surface S. since that— _ »
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— It will now be shown that each of these terms is zero.

— Let ¢’ be the velocity potential corresponding to the perturbation
velocity u’.
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— if the radius of the spherical surface S, is taken to be very large, each
of these integrals will be vanishingly small > F=0
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