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2017 Spring Inviscid Flow

Forces induced by singularities
o Previously, no force exists on a body that is in a uniform flow field.
o This agrees with our previous results: the Kutta-Joukowski law shows that 

in the absence of circulation around a body there are no forces acting on 
two-dimensional bodies.

o It is very difficult to establish an appreciable circulation around short 
bodies - that is, around three-dimensional bodies.

o It will be shown that a force exists on a three-dimensional body if it is 
exposed to a point singularity in the fluid.
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2017 Spring Inviscid Flow

Forces induced by singularities
o For equilibrium of the forces that act on the body of fluid that is inside S0

but outside S and Si, the sum of the forces must be zero
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2017 Spring Inviscid Flow

Forces induced by singularities
o In order to further reduce the integral, it is necessary to specify the nature 

of the singularity located inside the surface Si. The case of a source, or 
sink, and that of a doublet will be examined.

– First, the singularity at x = xi to be a source of strength Q
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velocity induced by all means other than the source under consideration.
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Forces induced by singularities
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o For a sink, iF Qur= -

2017 Spring Inviscid Flow

Forces induced by singularities
– Second, the singularity is a doublet (d → 0 ).
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• Then if ui is the fluid velocity at x = xi due to all components of the flow 
except the source and the sink under consideration, the velocity at x = 
xi, less that due to the source itself, will be

• The velocity at x = xi + d, less that due to the sink, will be
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Forces induced by singularities
– Then,
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2017 Spring Inviscid Flow

o Example: consider a sphere in the presence of a source
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Forces induced by singularities
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Sphere is attracted to the source with a force 
that is proportional to Q2.
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Kinetic energy of a moving fluid
o The kinetic energy associated with the fluid in the uniform flow around a 

stationary body will be infinite if the flow field is infinite in extent.
o However, the kinetic energy induced in a quiescent fluid by  the passage of 

a body through it will be finite, even if the flow field is infinite in extent. 
o For this reason, discussions of kinetic-energy considerations are based on 

a frame of reference in which the fluid far from the body is at rest and the 
body is moving.
– kinetic energy T of this volume of fluid
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2017 Spring Inviscid Flow

Kinetic energy of a moving fluid
– From the continuity equation

– From previous equation,

• Fluid velocity far from the body is zero à f can be a constant.
• By considering the surface S0 to be large and by choosing C to be 

the value of f far from the body, 
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Apparent Mass
o When a body moves through a quiescent fluid, a certain mass of the fluid 

is induced to move.
o Then, what equivalent mass of fluid, if it moved with the same velocity as 

the body, would exhibit the same kinetic energy as the actual case?

o If the fluid may be considered as being ideal, the mass of fluid referred to 
above is found to depend on the body shape only, and this mass of fluid is 
called the apparent (added) mass (M’).
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o Example: apparent mass for the sphere

– On the sphere surface S, (r = a)

Apparent Mass
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• This may be added to the actual mass of the sphere, and 

the total mass may be used.

• The existence of the fluid may be ignored if the apparent 

mass of fluid is added to the actual mass of the body.
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Surface Waves
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o The effect of gravity on liquid surfaces
o Flows associated with surface waves to be assumed “potential”, which is a 

valid approximation for many free-surface phenomena
o Focus on two-dimensional flow

2017 Spring Inviscid Flow

General Surface-Wave Problem
o In most cases, the motion of liquid induced by surface waves can be 

considered to be irrotational à Velocity vector is expressed as a gradient 
of a velocity potential, which must satisfy the Laplace equation.
– Boundary condition @ y = h

• Kinematic condition:

• Dynamic condition:
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General Surface-Wave Problem
– Boundary condition @ y = -h?

o The difficulty in solving surface-wave problems may be seen to be in the 
boundary conditions rather than the differential equation.

o However, for many interesting features of surface-wave flows, the 
difficulties may be avoided by linearizing the problem.
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Small-amplitude Plane Waves
o Plane waves: two-dimensional
o Small-amplitude: wave amplitude is small compared to other 

characteristic length scales

– Kinematic boundary condition becomes

– Dynamic condition becomes
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