INVISCID FLOW
Week 15

Prof. Hyungmin Park

Multiphase Flow and Flow Visualization Lab.

Department of Mechanical and Aerospace Engineering

Seoul National University

2017 Spring

Inviscid Flow

o One may ask whether standing waves may exist on the surface of a liquid
that is contained in a vessel of finite extent.
o Rectangular vessels will be considered, and it will be shown that only

standing waves whose wavelengths coincide with a discrete spectrum of
values may exist on such liquid surfaces.

What type of steady-state or pseudo-steady-
state waves, if any, may exist on the surface of
the liquid?
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o Since a steady-state wave solution is being sought, the velocity potential
should have a trigonometric time dependence.
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* The x dependence: trigonometric due to homogeneous boundary
conditions at x = £/.

* To satisfy Laplace’s equation, the y dependence must be
exponential or hyperbolic.

— By applying (c); B; =0

27 27wx 27zy 27rct
X, .t D, sin—— +D cos —— |cosh——
P(x,y,1) = ( 7 7 j 7 7

— Pressure condition (b);
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— Final boundary condition at the side walls (d);
D, coszTﬂl =xD, sin%ﬂl
* If D, = D, =0 - Trivial solution
* For non-trivial solution, suppose D; #0and D, =0
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— First two modes of ¢, and ¢,
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— General form of solutions
P, y,0=2.4,+2.4,
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D,, and D,,, may be determined if initial shape and velocity of
the free surface are specified.
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' s at an Interface

o Behavior of propagating waves at the separation of two dissimilar fluids

density p,

velocity U,

(x—ot)

27
P y=n(x,t)= ge * < Specified wave profile

\ A

density p,
velocity U,
— Using a perturbation analysis, one may derive new boundary

conditions for this problem.
u,=Ué +V¢ (i=12)

velocity potential for the perturbation to the uniform flow
caused by the waves at the interface
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o Governing equations and boundary conditions

o Solutions ¢ (x,y,0)=—ie(a-U,)e
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— Still, these should satisfy the pressure condition at the interface.
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— Pressure condition

2 2
—P 7(0‘—(]1)2 +P8=p, 7(0-_U2)2 + 0,8

O_:P2U2+p1U1i (p1_p2jg_ﬂ'_ PP Z(Uz_Ul)Z
P+ P, prtp )2 (py+p)

: . - lgA
* U;=U,=0, p, =0 (stationary gas over stationary liquid) o=z g—”
— for real o, the waves at the interface will propagate, so that
the surface of separation will remain intact. Stable.

A
* p, =0 (gas blowing over a liquid surface) o=U,* g—ﬂ (Stable)
U +U, U,-U,
° = o= *i
P1= P2 > >
Interfacial wave growing exponentially with
time. Unstable. Helmholtz (Rayleigh) instability
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* U;=U;=0,p;#py

+ gAl p—p, p, > p, . o isreal. Stable
o=t [=—| 12 |>
2\ p,+p, p, < p,: o is imaginary. Unstable. Taylor instability
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